The resipository contains the code and learned model parameters for our submision in Weather4cast2021 stage-1 competition.
This resipository depends on the following packages availability
- Pytorch Lightning
- timm
- torch_optimizer
- pytorch_model_summary
- einops
unzip folder.zip
cd folder
conda create --name swinencoder_env python=3.6
conda activate swinencoder_env
conda install pytorch=1.9.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt
- a.1) train from scratch
python main.py --gpus 0 --use_all_region
- a.2) fine tune a model from a checkpoint
python main.py --gpu_id 1 --use_all_region --mode train --name ALL_real_swinencoder3d_688080 --time-code 20210630T224355 --initial-epoch 58```
- b.1) evaluate an untrained model (with random weights)
python main.py --gpus 0 --use_all_region --mode test
- b.2) evaluate a trained model from a checkpoint (submitted inference)
python main.py --gpu_id 1 --use_all_region --mode test --name ALL_real_swinencoder3d_688080 --time-code 20210630T224355 --initial-epoch 58
To generate predictions using our trained model
R=R1
INPUT_PATH=../data
WEIGHTS=logs/ALL_real_swinencoder3d_688080
OUT_PATH=.
python inference.py -d $INPUT_PATH -r $R -w $WEIGHTS -o $OUT_PATH -g 1