[NAACL 2025] Efficient Multi-Agent Collaboration with Tool Use for Online Planning in Complex Table Question Answering
conda create --name mact python=3.10 -y
conda activate mact
pip install -r requirements.txt
We support the following datasets:
- WTQ, TAT, CRT, SciTab, DataBench
- Each instance in the dataset should contain at least following fields:
{"statement": a question to be answered or a statement to be validate in string format,
"table_text": a table in list format containing lists of rows.
"answer": a list containing answer(s) to a question.}
code/tqa.py
: main script for running experiments.
code/agent.py
: script containing classes and functions for controlling agent behaviours.
code/llm.py
: script for LLM calling.
code/tot.py
: script containing functions and prompts for using llm as evaluators to select best actions.
code/utils.py
: scripts containing helpful functions for running experiments.
code/prompts_table.py
: prompts used in our experiments.
code/fewshots_table.py
: few shot demostrations used in our experiments.
- Set the plan and coding models to the preferred gpt models, e.g., gpt-35-turbo.
- In the
agent.py
, add important information forload_gpt_azure
and comment out line 73. - run the following command.
python tqa.py --plan_model_name name of the planning model \ --code_model_name name of the coding model \ --dataset_path path to the dataset \ --max_step maximum iteration number \ --task the target tqa task name \
- Set up the coding agent using SGLang. Please find details here.
python -m sglang.launch_server --model-path path_to_the_coding_model --port port_number
- run the command in the step 3 above and specify port number
--code_endpoint port_number
- We use evaluation scripts from WTQ dataset to measure Exact Match Accuracy for WTQ, CRT and SciTab.
- We use the official evaluation scripts from TAT to evaluate models' performances on the TAT dataset.
@misc{zhou2025efficientmultiagentcollaborationtool,
title={Efficient Multi-Agent Collaboration with Tool Use for Online Planning in Complex Table Question Answering},
author={Wei Zhou and Mohsen Mesgar and Annemarie Friedrich and Heike Adel},
year={2025},
eprint={2412.20145},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.20145},
}