Tensorflow implementation of our robust multimodal brain tumor segmentation framework.
Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion MICCAI 2019
- Install TensorFlow 1.10 and CUDA 9.0
- Clone this repo
git clone https://github.com/cchen-cc/Robust-Mseg
cd Robust-Mseg
- Use
nii2tfrecord
function in./preprocessing.py
to convertnii
data intotfrecord
format to be decoded by./data_loader.py
- Specify the data path in
./main.py
- Run
./main.py
to start the training process
- Our trained models can be downloaded from Dropbox.
- Specify the model path and data path in
./evaluate.py
- Run
./evaluate.py
to start the evaluation.
If you find the code useful for your research, please consider cite our paper.
@inproceedings{chen2019robust,
title={Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion},
author={Chen, Cheng and Dou, Qi and Jin, Yueming and Chen, Hao and Qin, Jing and Heng, Pheng-Ann},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={447--456},
year={2019},
organization={Springer}
}
- Contact: Cheng Chen ([email protected])