Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion Report/create_reports.R
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,9 @@ save_score_errors <- list()
## Score predictions
print("Evaluating state forecasts")
geo_type <- "state"
state_scores <- evaluate_covid_predictions(state_predictions,
state_scores <- evaluate_covidcast(
state_predictions,
signals,
err_measures,
geo_type = geo_type
)
Expand Down
117 changes: 115 additions & 2 deletions Report/score.R
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ save_score_cards_wrapper <- function(score_card, geo_type, signal_name, output_d
}
}

# Fetch national truth data from CovidHubUtils.
evaluate_chu <- function(predictions, signals, err_measures) {
allowed_signals <- c(
"confirmed_incidence_num",
Expand All @@ -85,7 +86,7 @@ evaluate_chu <- function(predictions, signals, err_measures) {
"deaths_incidence_num" = "JHU",
"confirmed_admissions_covid_1d" = "HealthData"
)
scores <- c()
scores <- list()
for (signal_name in signals) {
preds_signal <- predictions %>%
filter(signal == signal_name)
Expand All @@ -103,6 +104,8 @@ evaluate_chu <- function(predictions, signals, err_measures) {
geo_type,
abbreviation
))
## select equivalent to
# select(target_end_date, actual, geo_value, full_location_name)
signal_scores <- evaluate_predictions(preds_signal,
truth_data = chu_truth,
err_measures,
Expand All @@ -113,7 +116,117 @@ evaluate_chu <- function(predictions, signals, err_measures) {
"forecaster"
)
)
scores <- rbind(scores, signal_scores)
scores[[signal_name]] <- signal_scores
}
return(bind_rows(scores))
}

# Fetch truth data from COVIDcast. This function bypasses some of the slow parts
# of the `evalcast` pipeline by pulling all data from COVIDcast together.
evaluate_covidcast <- function(predictions, signals, err_measures, geo_type) {
allowed_signals <- c(
"confirmed_incidence_num",
"deaths_incidence_num",
"confirmed_admissions_covid_1d"
)
assert_that(all(signals %in% allowed_signals),
msg = paste(
"Signal not allowed:",
setdiff(signals, allowed_signals)
)
)

source_map <- list(
"confirmed_incidence_num" = "jhu-csse",
"deaths_incidence_num" = "jhu-csse",
"confirmed_admissions_covid_1d" = "hhs"
)
scores <- list()
for (signal_name in signals) {
preds_signal <- predictions %>%
filter(signal == signal_name)
source <- source_map[[signal_name]]
covidcast_truth <- get_covidcast_period_actuals(preds_signal, source, signal_name, geo_type)
signal_scores <- evaluate_predictions(preds_signal,
truth_data = covidcast_truth,
err_measures,
grp_vars = c(
"target_end_date",
"geo_value",
"ahead",
"forecaster"
)
)
scores[[signal_name]] <- signal_scores
}

scores <- bind_rows(scores) %>%
arrange(ahead, geo_value, forecaster, forecast_date, data_source, signal, target_end_date, incidence_period) %>%
select(ahead, geo_value, forecaster, forecast_date, data_source, signal, target_end_date, incidence_period, everything())
return(scores)
}


get_covidcast_period_actuals <- function(response, source, signal_name, geo_type) {
# Get start/end dates of each period we want to sum truth values over.
target_periods <- response %>%
select(.data$forecast_date, .data$incidence_period, .data$ahead) %>%
distinct() %>%
purrr::pmap_dfr(get_target_period) %>%
distinct()

# Compute the actual values that the forecaster is trying to
# predict. In particular,
# - get most recent data available from covidcast for these target periods
# - sum up the response over the target incidence period
target_periods <- target_periods %>%
mutate(available = .data$end <= Sys.Date()) %>%
filter(.data$available) %>%
select(-.data$available)

covidcast_truth <- covidcast::covidcast_signal(
source,
signal_name,
geo_type = geo_type,
start_day = as.Date(min(target_periods$start)),
end_day = as.Date(max(target_periods$end))
) %>%
select(data_source, signal, geo_value, time_value, value)

# Expand out each period by day so easier to join on.
target_periods <- target_periods %>% purrr::pmap_dfr(function(start_date, end_date) {
tibble(
start = start_date,
target_end_date = end_date,
day = seq.Date(from = start_date, to = end_date, by = 1)
)
})

period_truth <- full_join(covidcast_truth, target_periods, by = c("time_value" = "day"))

if (signal_name != "confirmed_admissions_covid_1d") {
# For deaths and cases, expect each truth data period to cover a week
check_count <- period_truth %>%
group_by(.data$geo_value, .data$start, .data$target_end_date) %>%
summarize(num = n(), .groups = "drop") %>%
filter(num < 7)

if (nrow(check_count) != 0) {
warning(paste0(
"Some or all data missing for the following target periods: ",
paste(
paste(period_truth$start, period_truth$target_end_date, sep = "-"),
collapse = ", "
),
"."
))
}
}

period_truth <- period_truth %>%
group_by(.data$geo_value, .data$target_end_date) %>%
summarize(actual = sum(.data$value), .groups = "drop") %>%
select(.data$target_end_date, .data$actual, .data$geo_value)

return(period_truth)
}