Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 31 additions & 8 deletions comfy_extras/nodes_model_patch.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ def __init__(
device=None, dtype=None, operations=None
):
super().__init__()
self.additional_in_dim = additional_in_dim
self.img_in = operations.Linear(in_dim + additional_in_dim, dim, device=device, dtype=dtype)
self.controlnet_blocks = torch.nn.ModuleList(
[
Expand All @@ -44,7 +45,7 @@ def __init__(
)

def process_input_latent_image(self, latent_image):
latent_image = comfy.latent_formats.Wan21().process_in(latent_image)
latent_image[:, :16] = comfy.latent_formats.Wan21().process_in(latent_image[:, :16])
patch_size = 2
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(latent_image, (1, patch_size, patch_size))
orig_shape = hidden_states.shape
Expand Down Expand Up @@ -73,19 +74,33 @@ def load_model_patch(self, name):
sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True)
dtype = comfy.utils.weight_dtype(sd)
# TODO: this node will work with more types of model patches
model = QwenImageBlockWiseControlNet(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
additional_in_dim = sd["img_in.weight"].shape[1] - 64
model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
model.load_state_dict(sd)
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
return (model,)


class DiffSynthCnetPatch:
def __init__(self, model_patch, vae, image, strength):
self.encoded_image = model_patch.model.process_input_latent_image(vae.encode(image))
def __init__(self, model_patch, vae, image, strength, mask=None):
self.model_patch = model_patch
self.vae = vae
self.image = image
self.strength = strength
self.mask = mask
self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image))

def encode_latent_cond(self, image):
latent_image = self.vae.encode(image)
if self.model_patch.model.additional_in_dim > 0:
if self.mask is None:
mask_ = torch.ones_like(latent_image)[:, :self.model_patch.model.additional_in_dim // 4]
else:
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")

return torch.cat([latent_image, mask_], dim=1)
else:
return latent_image

def __call__(self, kwargs):
x = kwargs.get("x")
Expand All @@ -95,7 +110,7 @@ def __call__(self, kwargs):
spacial_compression = self.vae.spacial_compression_encode()
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.encoded_image = self.model_patch.model.process_input_latent_image(self.vae.encode(image_scaled.movedim(1, -1)))
self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1)))
comfy.model_management.load_models_gpu(loaded_models)

img = img + (self.model_patch.model.control_block(img, self.encoded_image.to(img.dtype), block_index) * self.strength)
Expand All @@ -118,17 +133,25 @@ def INPUT_TYPES(s):
"vae": ("VAE",),
"image": ("IMAGE",),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
},
"optional": {"mask": ("MASK",)}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "diffsynth_controlnet"
EXPERIMENTAL = True

CATEGORY = "advanced/loaders/qwen"

def diffsynth_controlnet(self, model, model_patch, vae, image, strength):
def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None):
model_patched = model.clone()
image = image[:, :, :, :3]
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength))
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
if mask.ndim == 4:
mask = mask.unsqueeze(2)
mask = 1.0 - mask

model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
return (model_patched,)


Expand Down
Loading