Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
145 changes: 97 additions & 48 deletions comfy_extras/nodes_wan.py
Original file line number Diff line number Diff line change
Expand Up @@ -877,6 +877,67 @@ def get_audio_embed_bucket_fps(audio_embed, fps=16, batch_frames=81, m=0, video_
return batch_audio_eb, min_batch_num


def wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, frame_offset=0, ref_image=None, audio_encoder_output=None, control_video=None, ref_motion=None, ref_motion_latent=None):
latent_t = ((length - 1) // 4) + 1
if audio_encoder_output is not None:
feat = torch.cat(audio_encoder_output["encoded_audio_all_layers"])
video_rate = 30
fps = 16
feat = linear_interpolation(feat, input_fps=50, output_fps=video_rate)
batch_frames = latent_t * 4
audio_embed_bucket, num_repeat = get_audio_embed_bucket_fps(feat, fps=fps, batch_frames=batch_frames, m=0, video_rate=video_rate)
audio_embed_bucket = audio_embed_bucket.unsqueeze(0)
if len(audio_embed_bucket.shape) == 3:
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 1)
elif len(audio_embed_bucket.shape) == 4:
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 3, 1)

audio_embed_bucket = audio_embed_bucket[:, :, :, frame_offset:frame_offset + batch_frames]
positive = node_helpers.conditioning_set_values(positive, {"audio_embed": audio_embed_bucket})
negative = node_helpers.conditioning_set_values(negative, {"audio_embed": audio_embed_bucket * 0.0})
frame_offset += batch_frames

if ref_image is not None:
ref_image = comfy.utils.common_upscale(ref_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
ref_latent = vae.encode(ref_image[:, :, :, :3])
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"reference_latents": [ref_latent]}, append=True)

if ref_motion is not None:
if ref_motion.shape[0] > 73:
ref_motion = ref_motion[-73:]

ref_motion = comfy.utils.common_upscale(ref_motion.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)

if ref_motion.shape[0] < 73:
r = torch.ones([73, height, width, 3]) * 0.5
r[-ref_motion.shape[0]:] = ref_motion
ref_motion = r

ref_motion_latent = vae.encode(ref_motion[:, :, :, :3])

if ref_motion_latent is not None:
ref_motion_latent = ref_motion_latent[:, :, -19:]
positive = node_helpers.conditioning_set_values(positive, {"reference_motion": ref_motion_latent})
negative = node_helpers.conditioning_set_values(negative, {"reference_motion": ref_motion_latent})

latent = torch.zeros([batch_size, 16, latent_t, height // 8, width // 8], device=comfy.model_management.intermediate_device())

control_video_out = comfy.latent_formats.Wan21().process_out(torch.zeros_like(latent))
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
control_video = vae.encode(control_video[:, :, :, :3])
control_video_out[:, :, :control_video.shape[2]] = control_video

# TODO: check if zero is better than none if none provided
positive = node_helpers.conditioning_set_values(positive, {"control_video": control_video_out})
negative = node_helpers.conditioning_set_values(negative, {"control_video": control_video_out})

out_latent = {}
out_latent["samples"] = latent
return positive, negative, out_latent, frame_offset


class WanSoundImageToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
Expand Down Expand Up @@ -906,57 +967,44 @@ def define_schema(cls):

@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, audio_encoder_output=None, control_video=None, ref_motion=None) -> io.NodeOutput:
latent_t = ((length - 1) // 4) + 1
if audio_encoder_output is not None:
feat = torch.cat(audio_encoder_output["encoded_audio_all_layers"])
video_rate = 30
fps = 16
feat = linear_interpolation(feat, input_fps=50, output_fps=video_rate)
audio_embed_bucket, num_repeat = get_audio_embed_bucket_fps(feat, fps=fps, batch_frames=latent_t * 4, m=0, video_rate=video_rate)
audio_embed_bucket = audio_embed_bucket.unsqueeze(0)
if len(audio_embed_bucket.shape) == 3:
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 1)
elif len(audio_embed_bucket.shape) == 4:
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 3, 1)

positive = node_helpers.conditioning_set_values(positive, {"audio_embed": audio_embed_bucket})
negative = node_helpers.conditioning_set_values(negative, {"audio_embed": audio_embed_bucket * 0.0})

if ref_image is not None:
ref_image = comfy.utils.common_upscale(ref_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
ref_latent = vae.encode(ref_image[:, :, :, :3])
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"reference_latents": [ref_latent]}, append=True)

if ref_motion is not None:
if ref_motion.shape[0] > 73:
ref_motion = ref_motion[-73:]

ref_motion = comfy.utils.common_upscale(ref_motion.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)

if ref_motion.shape[0] < 73:
r = torch.ones([73, height, width, 3]) * 0.5
r[-ref_motion.shape[0]:] = ref_motion
ref_motion = r

ref_motion = vae.encode(ref_motion[:, :, :, :3])
positive = node_helpers.conditioning_set_values(positive, {"reference_motion": ref_motion})
negative = node_helpers.conditioning_set_values(negative, {"reference_motion": ref_motion})

latent = torch.zeros([batch_size, 16, latent_t, height // 8, width // 8], device=comfy.model_management.intermediate_device())
positive, negative, out_latent, frame_offset = wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, ref_image=ref_image, audio_encoder_output=audio_encoder_output,
control_video=control_video, ref_motion=ref_motion)
return io.NodeOutput(positive, negative, out_latent)

control_video_out = comfy.latent_formats.Wan21().process_out(torch.zeros_like(latent))
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
control_video = vae.encode(control_video[:, :, :, :3])
control_video_out[:, :, :control_video.shape[2]] = control_video

# TODO: check if zero is better than none if none provided
positive = node_helpers.conditioning_set_values(positive, {"control_video": control_video_out})
negative = node_helpers.conditioning_set_values(negative, {"control_video": control_video_out})
class WanSoundImageToVideoExtend(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanSoundImageToVideoExtend",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("length", default=77, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Latent.Input("video_latent"),
io.AudioEncoderOutput.Input("audio_encoder_output", optional=True),
io.Image.Input("ref_image", optional=True),
io.Image.Input("control_video", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
is_experimental=True,
)

out_latent = {}
out_latent["samples"] = latent
@classmethod
def execute(cls, positive, negative, vae, length, video_latent, ref_image=None, audio_encoder_output=None, control_video=None) -> io.NodeOutput:
video_latent = video_latent["samples"]
width = video_latent.shape[-1] * 8
height = video_latent.shape[-2] * 8
batch_size = video_latent.shape[0]
frame_offset = video_latent.shape[-3] * 4
positive, negative, out_latent, frame_offset = wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, frame_offset=frame_offset, ref_image=ref_image, audio_encoder_output=audio_encoder_output,
control_video=control_video, ref_motion=None, ref_motion_latent=video_latent)
return io.NodeOutput(positive, negative, out_latent)


Expand Down Expand Up @@ -1019,6 +1067,7 @@ async def get_node_list(self) -> list[type[io.ComfyNode]]:
WanCameraImageToVideo,
WanPhantomSubjectToVideo,
WanSoundImageToVideo,
WanSoundImageToVideoExtend,
Wan22ImageToVideoLatent,
]

Expand Down
Loading