Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions .github/workflows/test-execution.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
name: Execution Tests

on:
push:
branches: [ main, master ]
pull_request:
branches: [ main, master ]

jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{ matrix.os }}
continue-on-error: true
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install -r tests-unit/requirements.txt
- name: Run Execution Tests
run: |
python -m pytest tests/execution -v --skip-timing-checks
6 changes: 5 additions & 1 deletion comfy/clip_vision.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,8 +136,12 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
elif "embeddings.patch_embeddings.projection.weight" in sd:

# Dinov2
elif 'encoder.layer.39.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
elif 'encoder.layer.23.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_large.json")
else:
return None

Expand Down
33 changes: 26 additions & 7 deletions comfy/image_encoders/dino2.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,20 @@ def __init__(self, dim, dtype, device, operations):
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)

class Dinov2MLP(torch.nn.Module):
def __init__(self, hidden_size: int, dtype, device, operations):
super().__init__()

mlp_ratio = 4
hidden_features = int(hidden_size * mlp_ratio)
self.fc1 = operations.Linear(hidden_size, hidden_features, bias = True, device=device, dtype=dtype)
self.fc2 = operations.Linear(hidden_features, hidden_size, bias = True, device=device, dtype=dtype)

def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = torch.nn.functional.gelu(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state

class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
Expand All @@ -50,12 +64,15 @@ def forward(self, x):


class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
if use_swiglu_ffn:
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
else:
self.mlp = Dinov2MLP(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)

Expand All @@ -66,9 +83,10 @@ def forward(self, x, optimized_attention):


class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
for _ in range(num_layers)])

def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
Expand All @@ -78,8 +96,8 @@ def forward(self, x, intermediate_output=None):
intermediate_output = len(self.layer) + intermediate_output

intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
for i, layer in enumerate(self.layer):
x = layer(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
Expand Down Expand Up @@ -128,9 +146,10 @@ def __init__(self, config_dict, dtype, device, operations):
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
use_swiglu_ffn = config_dict["use_swiglu_ffn"]

self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)

def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
Expand Down
22 changes: 22 additions & 0 deletions comfy/image_encoders/dino2_large.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
{
"hidden_size": 1024,
"use_mask_token": true,
"patch_size": 14,
"image_size": 518,
"num_channels": 3,
"num_attention_heads": 16,
"initializer_range": 0.02,
"attention_probs_dropout_prob": 0.0,
"hidden_dropout_prob": 0.0,
"hidden_act": "gelu",
"mlp_ratio": 4,
"model_type": "dinov2",
"num_hidden_layers": 24,
"layer_norm_eps": 1e-6,
"qkv_bias": true,
"use_swiglu_ffn": false,
"layerscale_value": 1.0,
"drop_path_rate": 0.0,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}
5 changes: 5 additions & 0 deletions comfy/latent_formats.py
Original file line number Diff line number Diff line change
Expand Up @@ -538,6 +538,11 @@ class Hunyuan3Dv2(LatentFormat):
latent_dimensions = 1
scale_factor = 0.9990943042622529

class Hunyuan3Dv2_1(LatentFormat):
scale_factor = 1.0039506158752403
latent_channels = 64
latent_dimensions = 1

class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
Expand Down
Loading
Loading