Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion comfy/context_windows.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: Inde
# if multiple conds, split based on primary region
if self.split_conds_to_windows and len(cond_in) > 1:
region = window.get_region_index(len(cond_in))
logging.info(f"Splitting conds to windows; using region {region} for window {window[0]}-{window[-1]} with center ratio {window.center_ratio:.3f}")
logging.info(f"Splitting conds to windows; using region {region} for window {window.index_list[0]}-{window.index_list[-1]} with center ratio {window.center_ratio:.3f}")
cond_in = [cond_in[region]]
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
Expand Down
21 changes: 18 additions & 3 deletions comfy/samplers.py
Original file line number Diff line number Diff line change
Expand Up @@ -984,9 +984,6 @@ def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None,
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device

if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)

noise = noise.to(device)
latent_image = latent_image.to(device)
sigmas = sigmas.to(device)
Expand All @@ -1013,6 +1010,24 @@ def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callba
else:
latent_shapes = [latent_image.shape]

if denoise_mask is not None:
if denoise_mask.is_nested:
denoise_masks = denoise_mask.unbind()
denoise_masks = denoise_masks[:len(latent_shapes)]
else:
denoise_masks = [denoise_mask]

for i in range(len(denoise_masks), len(latent_shapes)):
denoise_masks.append(torch.ones(latent_shapes[i]))

for i in range(len(denoise_masks)):
denoise_masks[i] = comfy.sampler_helpers.prepare_mask(denoise_masks[i], latent_shapes[i], self.model_patcher.load_device)

if len(denoise_masks) > 1:
denoise_mask, _ = comfy.utils.pack_latents(denoise_masks)
else:
denoise_mask = denoise_masks[0]

self.conds = {}
for k in self.original_conds:
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
Expand Down
Loading