Skip to content

containers/omlmd

Folders and files

NameName
Last commit message
Last commit date
Sep 25, 2024
Aug 14, 2024
Aug 21, 2024
Oct 30, 2024
Oct 30, 2024
Oct 3, 2024
Oct 1, 2024
Jul 20, 2024
Aug 11, 2024
Aug 14, 2024
Aug 14, 2024
Oct 30, 2024
Oct 30, 2024

Repository files navigation

OCI Artifact for ML model & metadata

Python License Build E2E testing PyPI - Version

Static Badge GitHub Repo stars YouTube Channel Subscribers

This project is a collection of blueprints, patterns and toolchain (in the form of python SDK and CLI) to leverage OCI Artifact and containers for ML model and metadata.

Documentation: https://containers.github.io/omlmd

GitHub repository: https://github.com/containers/omlmd
YouTube video playlist: https://www.youtube.com/watch?v=W4GwIRPXE8E&list=PLdbdefeRIj9SRbg6Hkr15GeyPH0qpk_ww
Pypi distribution: https://pypi.org/project/omlmd

Installation

Tip

We recommend checking out the Getting Started tutorial in the documentation; below instructions are provided for a quick overview.

In your Python environment, use:

pip install omlmd

Push

Store ML model file model.joblib and its metadata in the OCI repository at localhost:8080:

from omlmd.helpers import Helper

omlmd = Helper()
omlmd.push("localhost:8080/matteo/ml-artifact:latest", "model.joblib", name="Model Example", author="John Doe", license="Apache-2.0", accuracy=9.876543210)

Pull

Fetch everything in a single pull:

omlmd.pull(target="localhost:8080/matteo/ml-artifact:latest", outdir="tmp/b")

Or fetch only the ML model assets:

omlmd.pull(target="localhost:8080/matteo/ml-artifact:latest", outdir="tmp/b", media_types=["application/x-mlmodel"])

Custom Pull: just metadata

The features can be composed in order to expose higher lever capabilities, such as retrieving only the metadata informatio. Implementation intends to follow OCI-Artifact convention

md = omlmd.get_config(target="localhost:8080/matteo/ml-artifact:latest")
print(md)

Crawl

Client-side crawling of metadata.

Note: Server-side analogous coming soon/reference in blueprints.

crawl_result = omlmd.crawl([
    "localhost:8080/matteo/ml-artifact:v1",
    "localhost:8080/matteo/ml-artifact:v2",
    "localhost:8080/matteo/ml-artifact:v3"
])

Example query

Demonstrate integration of crawling results with querying (in this case using jQ)

Of the crawled ML OCI artifacts, which one exhibit the max accuracy?

import jq
jq.compile( "max_by(.config.customProperties.accuracy).reference" ).input_text(crawl_result).first()

To be continued...

Don't forget to checkout the documentation website for more information!