Skip to content

Efficient and scalable parallelism using the message passing interface (MPI) to handle big data and highly computational problems.

License

Notifications You must be signed in to change notification settings

daleroberts/pypar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logo

PyPar is a python library that provides efficient and scalable parallelism using the message passing interface (MPI) to handle big data and highly computational problems.

Build Status

PyPar is used by a number of large projects, such as:

Example

A simple 'pass the parcel' example.

import pypar as pp

ncpus = pp.size()
rank = pp.rank()
node = pp.get_processor_name()

print 'I am rank %d of %d on node %s' % (rank, ncpus, node)

if rank == 0:
  msg = 'P0'
  pp.send(msg, destination=1)
  msg = pp.receive(source=rank-1)
  print 'Processor 0 received message "%s" from rank %d' % (msg, rank-1)
else:
  source = rank-1
  destination = (rank+1) % ncpus
  msg = pp.receive(source)
  msg = msg + 'P' + str(rank)
  pp.send(msg, destination)

pp.finalize()

About

Efficient and scalable parallelism using the message passing interface (MPI) to handle big data and highly computational problems.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •