Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix KeyError: "None of [Index(['0_x', '1_x', '0_y', '1_y'], dtype='object')] are in the [columns]" in find_objects #384

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 12 additions & 3 deletions dask_image/ndmeasure/_utils/_find_objects.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import dask.dataframe as dd
import numpy as np
import pandas as pd
from dask.delayed import Delayed
import dask.dataframe as dd


def _array_chunk_location(block_id, chunks):
Expand All @@ -28,7 +28,8 @@ def _find_bounding_boxes(x, array_location):
result = {}
for val in unique_vals:
positions = np.where(x == val)
slices = tuple(slice(np.min(pos) + array_location[i], np.max(pos) + 1 + array_location[i]) for i, pos in enumerate(positions))
slices = tuple(slice(np.min(pos) + array_location[i], np.max(pos) + 1 + array_location[i]) for i, pos in
enumerate(positions))
result[val] = slices
column_names = [i for i in range(x.ndim)] # column names are: 0, 1, ... nD
return pd.DataFrame.from_dict(result, orient='index', columns=column_names)
Expand Down Expand Up @@ -70,6 +71,14 @@ def _find_objects(ndim, df1, df2):
df1 = dd.from_delayed(df1, meta=meta)
if isinstance(df2, Delayed):
df2 = dd.from_delayed(df2, meta=meta)
ddf = dd.merge(df1, df2, how="outer", left_index=True, right_index=True)

if len(df1) > 0 and len(df2) > 0:
ddf = dd.merge(df1, df2, how="outer", left_index=True, right_index=True)
elif len(df1) > 0:
ddf = df1
elif len(df2) > 0:
ddf = df2
else:
ddf = pd.DataFrame()
result = ddf.apply(_merge_bounding_boxes, ndim=ndim, axis=1, meta=meta)
return result
28 changes: 18 additions & 10 deletions tests/test_dask_image/test_ndmeasure/test_find_objects.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
from dask_image.ndmeasure._utils import _labeled_comprehension_delayed
import dask.array as da
import dask.dataframe as dd
import numpy as np
Expand All @@ -22,9 +21,9 @@ def label_image():

"""
label_image = np.zeros((5, 10)).astype(int)
label_image[1:3,0:2] = 111
label_image[3,3:-2] = 222
label_image[0:2,-3:] = 333
label_image[1:3, 0:2] = 111
label_image[3, 3:-2] = 222
label_image[0:2, -3:] = 333
label_image = da.from_array(label_image, chunks=(5, 5))
return label_image

Expand All @@ -43,8 +42,8 @@ def label_image_with_empty_chunk():
[ 0, 0, 0, 0, 0, 0]])
"""
label_image = np.zeros((6, 6)).astype(int)
label_image[1:3,0:2] = 111
label_image[4,3:] = 222
label_image[1:3, 0:2] = 111
label_image[4, 3:] = 222
label_image = da.from_array(label_image, chunks=(3, 3))
return label_image

Expand All @@ -55,14 +54,23 @@ def test_find_objects_err(label_image):
dask_image.ndmeasure.find_objects(label_image)


def test_empty_chunk():
test_labels = da.zeros((10, 10), dtype='int', chunks=(3, 3))
test_labels[0, 0] = 1
computed_result = dask_image.ndmeasure.find_objects(test_labels).compute()
expected = pd.DataFrame.from_dict({0: {1: slice(0, 1)},
1: {1: slice(0, 1)}, })
assert computed_result.equals(expected)


def test_find_objects(label_image):
result = dask_image.ndmeasure.find_objects(label_image)
assert isinstance(result, dd.DataFrame)
computed_result = result.compute()
assert isinstance(computed_result, pd.DataFrame)
expected = pd.DataFrame.from_dict(
{0: {111: slice(1, 3), 222: slice(3, 4), 333: slice(0, 2)},
1: {111: slice(0, 2), 222: slice(3, 8), 333: slice(7, 10)}}
1: {111: slice(0, 2), 222: slice(3, 8), 333: slice(7, 10)}}
)
assert computed_result.equals(expected)

Expand All @@ -75,8 +83,8 @@ def test_3d_find_objects(label_image):
assert isinstance(computed_result, pd.DataFrame)
expected = pd.DataFrame.from_dict(
{0: {111: slice(1, 3), 222: slice(3, 4), 333: slice(0, 2)},
1: {111: slice(0, 2), 222: slice(3, 8), 333: slice(7, 10)},
2: {111: slice(0, 2), 222: slice(0, 2), 333: slice(0, 2)}}
1: {111: slice(0, 2), 222: slice(3, 8), 333: slice(7, 10)},
2: {111: slice(0, 2), 222: slice(0, 2), 333: slice(0, 2)}}
)
assert computed_result.equals(expected)

Expand All @@ -88,6 +96,6 @@ def test_find_objects_with_empty_chunks(label_image_with_empty_chunk):
assert isinstance(computed_result, pd.DataFrame)
expected = pd.DataFrame.from_dict(
{0: {111: slice(1, 3, None), 222: slice(4, 5, None)},
1: {111: slice(0, 2, None), 222: slice(3, 6, None)}}
1: {111: slice(0, 2, None), 222: slice(3, 6, None)}}
)
assert computed_result.equals(expected)