Skip to content
/ adam Public
forked from ami-iit/adam

adam implements a collection of algorithms for calculating rigid-body dynamics in Jax, CasADi, PyTorch, and Numpy.

License

Notifications You must be signed in to change notification settings

evelyd/adam

 
 

Repository files navigation

adam

adam

Automatic Differentiation for rigid-body-dynamics AlgorithMs

adam implements a collection of algorithms for calculating rigid-body dynamics for floating-base robots, in mixed and body fixed representations (see Traversaro's A Unified View of the Equations of Motion used for Control Design of Humanoid Robots) using:

adam employs the automatic differentiation capabilities of these frameworks to compute, if needed, gradients, Jacobian, Hessians of rigid-body dynamics quantities. This approach enables the design of optimal control and reinforcement learning strategies in robotics.

adam is based on Roy Featherstone's Rigid Body Dynamics Algorithms.


⚠️ REPOSITORY UNDER DEVELOPMENT ⚠️
We cannot guarantee stable API


🐍 Dependencies

Other requisites are:

  • urdf_parser_py
  • jax
  • casadi
  • pytorch
  • numpy

They will be installed in the installation step!

💾 Installation

The installation can be done either using the Python provided by apt (on Debian-based distros) or via conda (on Linux and macOS).

🐍 Installation with pip

Install python3, if not installed (in Ubuntu 20.04):

sudo apt install python3.8

Create a virtual environment, if you prefer. For example:

pip install virtualenv
python3 -m venv your_virtual_env
source your_virtual_env/bin/activate

Inside the virtual environment, install the library from pip:

  • Install Jax interface:

    pip install adam-robotics[jax]
  • Install CasADi interface:

    pip install adam-robotics[casadi]
  • Install PyTorch interface:

    pip install adam-robotics[pytorch]
  • Install ALL interfaces:

    pip install adam-robotics[all]

If you want the last version:

pip install adam-robotics[selected-interface]@git+https://github.com/ami-iit/ADAM

or clone the repo and install:

git clone https://github.com/ami-iit/adam.git
cd adam
pip install .[selected-interface]

📦 Installation with conda

Installation from conda-forge package

mamba create -n adamenv -c conda-forge adam-robotics

If you want to use jax or pytorch, just install the corresponding package as well.

🔨 Installation from repo

Install in a conda environment the required dependencies:

  • Jax interface dependencies:

    mamba create -n adamenv -c conda-forge jax numpy lxml prettytable matplotlib urdfdom-py
  • CasADi interface dependencies:

    mamba create -n adamenv -c conda-forge casadi numpy lxml prettytable matplotlib urdfdom-py
  • PyTorch interface dependencies:

    mamba create -n adamenv -c conda-forge pytorch numpy lxml prettytable matplotlib urdfdom-py
  • ALL interfaces dependencies:

    mamba create -n adamenv -c conda-forge jax casadi pytorch numpy lxml prettytable matplotlib urdfdom-py

Activate the environment, clone the repo and install the library:

mamba activate adamenv
git clone https://github.com/ami-iit/ADAM.git
cd adam
pip install --no-deps .

🚀 Usage

The following are small snippets of the use of adam. More examples are arriving! Have also a look at te tests folder.

Jax interface

import adam
from adam.jax import KinDynComputations
import icub_models
import numpy as np

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]
# Specify the root link
root_link = 'root_link'
kinDyn = KinDynComputations(model_path, joints_name_list, root_link)
# choose the representation, if you want to use the body fixed representation
kinDyn.set_frame_velocity_representation(adam.Representations.BODY_FIXED_REPRESENTATION)
# or, if you want to use the mixed representation (that is the default)
kinDyn.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix(w_H_b, joints)
print(M)

CasADi interface

import adam
from adam.casadi import KinDynComputations
import icub_models
import numpy as np

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]
# Specify the root link
root_link = 'root_link'
kinDyn = KinDynComputations(model_path, joints_name_list, root_link)
# choose the representation you want to use the body fixed representation
kinDyn.set_frame_velocity_representation(adam.Representations.BODY_FIXED_REPRESENTATION)
# or, if you want to use the mixed representation (that is the default)
kinDyn.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix_fun()
print(M(w_H_b, joints))

PyTorch interface

import adam
from adam.pytorch import KinDynComputations
import icub_models
import numpy as np

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]
# Specify the root link
root_link = 'root_link'
kinDyn = KinDynComputations(model_path, joints_name_list, root_link)
# choose the representation you want to use the body fixed representation
kinDyn.set_frame_velocity_representation(adam.Representations.BODY_FIXED_REPRESENTATION)
# or, if you want to use the mixed representation (that is the default)
kinDyn.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix(w_H_b, joints)
print(M)

🦸‍♂️ Contributing

adam is an open-source project. Contributions are very welcome!

Open an issue with your feature request or if you spot a bug. Then, you can also proceed with a Pull-requests! 🚀

Todo

  • Center of Mass position
  • Jacobians
  • Forward kinematics
  • Mass Matrix via CRBA
  • Centroidal Momentum Matrix via CRBA
  • Recursive Newton-Euler algorithm (still no acceleration in the algorithm, since it is used only for the computation of the bias force)
  • Articulated Body algorithm

About

adam implements a collection of algorithms for calculating rigid-body dynamics in Jax, CasADi, PyTorch, and Numpy.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%