Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: sync exercise instructions #173

Merged
merged 1 commit into from
Nov 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions exercises/practice/acronym/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@ Punctuation is handled as follows: hyphens are word separators (like whitespace)

For example:

|Input|Output|
|-|-|
|As Soon As Possible|ASAP|
|Liquid-crystal display|LCD|
|Thank George It's Friday!|TGIF|
| Input | Output |
| ------------------------- | ------ |
| As Soon As Possible | ASAP |
| Liquid-crystal display | LCD |
| Thank George It's Friday! | TGIF |
4 changes: 2 additions & 2 deletions exercises/practice/affine-cipher/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ The affine cipher is a type of monoalphabetic substitution cipher.
Each character is mapped to its numeric equivalent, encrypted with a mathematical function and then converted to the letter relating to its new numeric value.
Although all monoalphabetic ciphers are weak, the affine cipher is much stronger than the atbash cipher, because it has many more keys.

[//]: # ( monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic )
[//]: # " monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic "

## Encryption

Expand All @@ -23,7 +23,7 @@ Where:
For the Roman alphabet `m` is `26`.
- `a` and `b` are integers which make the encryption key

Values `a` and `m` must be *coprime* (or, *relatively prime*) for automatic decryption to succeed, i.e., they have number `1` as their only common factor (more information can be found in the [Wikipedia article about coprime integers][coprime-integers]).
Values `a` and `m` must be _coprime_ (or, _relatively prime_) for automatic decryption to succeed, i.e., they have number `1` as their only common factor (more information can be found in the [Wikipedia article about coprime integers][coprime-integers]).
In case `a` is not coprime to `m`, your program should indicate that this is an error.
Otherwise it should encrypt or decrypt with the provided key.

Expand Down
8 changes: 4 additions & 4 deletions exercises/practice/all-your-base/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,20 +14,20 @@ Given a number in base **a**, represented as a sequence of digits, convert it to

In positional notation, a number in base **b** can be understood as a linear combination of powers of **b**.

The number 42, *in base 10*, means:
The number 42, _in base 10_, means:

`(4 * 10^1) + (2 * 10^0)`

The number 101010, *in base 2*, means:
The number 101010, _in base 2_, means:

`(1 * 2^5) + (0 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (0 * 2^0)`

The number 1120, *in base 3*, means:
The number 1120, _in base 3_, means:

`(1 * 3^3) + (1 * 3^2) + (2 * 3^1) + (0 * 3^0)`

I think you got the idea!

*Yes. Those three numbers above are exactly the same. Congratulations!*
_Yes. Those three numbers above are exactly the same. Congratulations!_

[positional-notation]: https://en.wikipedia.org/wiki/Positional_notation
4 changes: 2 additions & 2 deletions exercises/practice/armstrong-numbers/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@ An [Armstrong number][armstrong-number] is a number that is the sum of its own d
For example:

- 9 is an Armstrong number, because `9 = 9^1 = 9`
- 10 is *not* an Armstrong number, because `10 != 1^2 + 0^2 = 1`
- 10 is _not_ an Armstrong number, because `10 != 1^2 + 0^2 = 1`
- 153 is an Armstrong number, because: `153 = 1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153`
- 154 is *not* an Armstrong number, because: `154 != 1^3 + 5^3 + 4^3 = 1 + 125 + 64 = 190`
- 154 is _not_ an Armstrong number, because: `154 != 1^3 + 5^3 + 4^3 = 1 + 125 + 64 = 190`

Write some code to determine whether a number is an Armstrong number.

Expand Down
2 changes: 1 addition & 1 deletion exercises/practice/binary-search/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ Binary search only works when a list has been sorted.

The algorithm looks like this:

- Find the middle element of a *sorted* list and compare it with the item we're looking for.
- Find the middle element of a _sorted_ list and compare it with the item we're looking for.
- If the middle element is our item, then we're done!
- If the middle element is greater than our item, we can eliminate that element and all the elements **after** it.
- If the middle element is less than our item, we can eliminate that element and all the elements **before** it.
Expand Down
8 changes: 8 additions & 0 deletions exercises/practice/darts/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ Write a function that returns the earned points in a single toss of a Darts game

In our particular instance of the game, the target rewards 4 different amounts of points, depending on where the dart lands:

![Our dart scoreboard with values from a complete miss to a bullseye](https://assets.exercism.org/images/exercises/darts/darts-scoreboard.svg)

- If the dart lands outside the target, player earns no points (0 points).
- If the dart lands in the outer circle of the target, player earns 1 point.
- If the dart lands in the middle circle of the target, player earns 5 points.
Expand All @@ -16,8 +18,14 @@ Of course, they are all centered at the same point — that is, the circles are

Write a function that given a point in the target (defined by its [Cartesian coordinates][cartesian-coordinates] `x` and `y`, where `x` and `y` are [real][real-numbers]), returns the correct amount earned by a dart landing at that point.

## Credit

The scoreboard image was created by [habere-et-dispertire][habere-et-dispertire] using [Inkscape][inkscape].

[darts]: https://en.wikipedia.org/wiki/Darts
[darts-target]: https://en.wikipedia.org/wiki/Darts#/media/File:Darts_in_a_dartboard.jpg
[concentric]: https://mathworld.wolfram.com/ConcentricCircles.html
[cartesian-coordinates]: https://www.mathsisfun.com/data/cartesian-coordinates.html
[real-numbers]: https://www.mathsisfun.com/numbers/real-numbers.html
[habere-et-dispertire]: https://exercism.org/profiles/habere-et-dispertire
[inkscape]: https://en.wikipedia.org/wiki/Inkscape
2 changes: 1 addition & 1 deletion exercises/practice/isogram/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,4 +11,4 @@ Examples of isograms:
- downstream
- six-year-old

The word *isograms*, however, is not an isogram, because the s repeats.
The word _isograms_, however, is not an isogram, because the s repeats.
5 changes: 4 additions & 1 deletion exercises/practice/knapsack/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,10 +13,12 @@ Given a knapsack with a specific carrying capacity (W), help Bob determine the m
Note that Bob can take only one of each item.

All values given will be strictly positive.
Items will be represented as a list of pairs, `wi` and `vi`, where the first element `wi` is the weight of the *i*th item and `vi` is the value for that item.
Items will be represented as a list of items.
Each item will have a weight and value.

For example:

```none
Items: [
{ "weight": 5, "value": 10 },
{ "weight": 4, "value": 40 },
Expand All @@ -25,6 +27,7 @@ Items: [
]

Knapsack Limit: 10
```

For the above, the first item has weight 5 and value 10, the second item has weight 4 and value 40, and so on.

Expand Down
16 changes: 8 additions & 8 deletions exercises/practice/list-ops/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,13 @@ Implement a series of basic list operations, without using existing functions.

The precise number and names of the operations to be implemented will be track dependent to avoid conflicts with existing names, but the general operations you will implement include:

- `append` (*given two lists, add all items in the second list to the end of the first list*);
- `concatenate` (*given a series of lists, combine all items in all lists into one flattened list*);
- `filter` (*given a predicate and a list, return the list of all items for which `predicate(item)` is True*);
- `length` (*given a list, return the total number of items within it*);
- `map` (*given a function and a list, return the list of the results of applying `function(item)` on all items*);
- `foldl` (*given a function, a list, and initial accumulator, fold (reduce) each item into the accumulator from the left*);
- `foldr` (*given a function, a list, and an initial accumulator, fold (reduce) each item into the accumulator from the right*);
- `reverse` (*given a list, return a list with all the original items, but in reversed order*).
- `append` (_given two lists, add all items in the second list to the end of the first list_);
- `concatenate` (_given a series of lists, combine all items in all lists into one flattened list_);
- `filter` (_given a predicate and a list, return the list of all items for which `predicate(item)` is True_);
- `length` (_given a list, return the total number of items within it_);
- `map` (_given a function and a list, return the list of the results of applying `function(item)` on all items_);
- `foldl` (_given a function, a list, and initial accumulator, fold (reduce) each item into the accumulator from the left_);
- `foldr` (_given a function, a list, and an initial accumulator, fold (reduce) each item into the accumulator from the right_);
- `reverse` (_given a list, return a list with all the original items, but in reversed order_).

Note, the ordering in which arguments are passed to the fold functions (`foldl`, `foldr`) is significant.
20 changes: 10 additions & 10 deletions exercises/practice/protein-translation/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,16 +29,16 @@ Note the stop codon `"UAA"` terminates the translation and the final methionine

Below are the codons and resulting Amino Acids needed for the exercise.

Codon | Protein
:--- | :---
AUG | Methionine
UUU, UUC | Phenylalanine
UUA, UUG | Leucine
UCU, UCC, UCA, UCG | Serine
UAU, UAC | Tyrosine
UGU, UGC | Cysteine
UGG | Tryptophan
UAA, UAG, UGA | STOP
| Codon | Protein |
| :----------------- | :------------ |
| AUG | Methionine |
| UUU, UUC | Phenylalanine |
| UUA, UUG | Leucine |
| UCU, UCC, UCA, UCG | Serine |
| UAU, UAC | Tyrosine |
| UGU, UGC | Cysteine |
| UGG | Tryptophan |
| UAA, UAG, UGA | STOP |

Learn more about [protein translation on Wikipedia][protein-translation].

Expand Down
4 changes: 2 additions & 2 deletions exercises/practice/rotational-cipher/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ Ciphertext is written out in the same formatting as the input including spaces a

## Examples

- ROT5 `omg` gives `trl`
- ROT0 `c` gives `c`
- ROT5 `omg` gives `trl`
- ROT0 `c` gives `c`
- ROT26 `Cool` gives `Cool`
- ROT13 `The quick brown fox jumps over the lazy dog.` gives `Gur dhvpx oebja sbk whzcf bire gur ynml qbt.`
- ROT13 `Gur dhvpx oebja sbk whzcf bire gur ynml qbt.` gives `The quick brown fox jumps over the lazy dog.`