Skip to content

Commit

Permalink
Sync exercises
Browse files Browse the repository at this point in the history
[no important files changed]
  • Loading branch information
keiravillekode committed Jan 18, 2025
1 parent ff72175 commit 121a1ca
Show file tree
Hide file tree
Showing 30 changed files with 210 additions and 114 deletions.
11 changes: 5 additions & 6 deletions exercises/practice/anagram/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@
# Instructions

Your task is to, given a target word and a set of candidate words, to find the subset of the candidates that are anagrams of the target.
Given a target word and one or more candidate words, your task is to find the candidates that are anagrams of the target.

An anagram is a rearrangement of letters to form a new word: for example `"owns"` is an anagram of `"snow"`.
A word is _not_ its own anagram: for example, `"stop"` is not an anagram of `"stop"`.

The target and candidates are words of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`).
Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `StoP` is not an anagram of `sTOp`.
The anagram set is the subset of the candidate set that are anagrams of the target (in any order).
Words in the anagram set should have the same letter case as in the candidate set.
The target word and candidate words are made up of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`).
Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `"StoP"` is not an anagram of `"sTOp"`.
The words you need to find should be taken from the candidate words, using the same letter case.

Given the target `"stone"` and candidates `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, `"Seton"`, the anagram set is `"tones"`, `"notes"`, `"Seton"`.
Given the target `"stone"` and the candidate words `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, and `"Seton"`, the anagram words you need to find are `"tones"`, `"notes"`, and `"Seton"`.
2 changes: 1 addition & 1 deletion exercises/practice/atbash-cipher/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Instructions

Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.
Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East.

The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
The first letter is replaced with the last letter, the second with the second-last, and so on.
Expand Down
2 changes: 1 addition & 1 deletion exercises/practice/atbash-cipher/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
".meta/example.zig"
]
},
"blurb": "Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.",
"blurb": "Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East.",
"source": "Wikipedia",
"source_url": "https://en.wikipedia.org/wiki/Atbash"
}
5 changes: 5 additions & 0 deletions exercises/practice/bob/.meta/tests.toml
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ description = "alternate silence"

[66953780-165b-4e7e-8ce3-4bcb80b6385a]
description = "multiple line question"
include = false

[5371ef75-d9ea-4103-bcfa-2da973ddec1b]
description = "starting with whitespace"
Expand All @@ -83,3 +84,7 @@ description = "other whitespace"

[12983553-8601-46a8-92fa-fcaa3bc4a2a0]
description = "non-question ending with whitespace"

[2c7278ac-f955-4eb4-bf8f-e33eb4116a15]
description = "multiple line question"
reimplements = "66953780-165b-4e7e-8ce3-4bcb80b6385a"
12 changes: 6 additions & 6 deletions exercises/practice/bob/test_bob.zig
Original file line number Diff line number Diff line change
Expand Up @@ -123,12 +123,6 @@ test "alternate silence" {
try testing.expectEqualStrings(expected, actual);
}

test "multiple line question" {
const expected = "Whatever.";
const actual = response("\nDoes this cryogenic chamber make me look fat?\nNo.");
try testing.expectEqualStrings(expected, actual);
}

test "starting with whitespace" {
const expected = "Whatever.";
const actual = response(" hmmmmmmm...");
Expand All @@ -152,3 +146,9 @@ test "non-question ending with whitespace" {
const actual = response("This is a statement ending with whitespace ");
try testing.expectEqualStrings(expected, actual);
}

test "multiple line question" {
const expected = "Sure.";
const actual = response("\nDoes this cryogenic chamber make\n me look fat?");
try testing.expectEqualStrings(expected, actual);
}
28 changes: 1 addition & 27 deletions exercises/practice/collatz-conjecture/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,29 +1,3 @@
# Instructions

The Collatz Conjecture or 3x+1 problem can be summarized as follows:

Take any positive integer n.
If n is even, divide n by 2 to get n / 2.
If n is odd, multiply n by 3 and add 1 to get 3n + 1.
Repeat the process indefinitely.
The conjecture states that no matter which number you start with, you will always reach 1 eventually.

Given a number n, return the number of steps required to reach 1.

## Examples

Starting with n = 12, the steps would be as follows:

0. 12
1. 6
2. 3
3. 10
4. 5
5. 16
6. 8
7. 4
8. 2
9. 1

Resulting in 9 steps.
So for input n = 12, the return value would be 9.
Given a positive integer, return the number of steps it takes to reach 1 according to the rules of the Collatz Conjecture.
28 changes: 28 additions & 0 deletions exercises/practice/collatz-conjecture/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Introduction

One evening, you stumbled upon an old notebook filled with cryptic scribbles, as though someone had been obsessively chasing an idea.
On one page, a single question stood out: **Can every number find its way to 1?**
It was tied to something called the **Collatz Conjecture**, a puzzle that has baffled thinkers for decades.

The rules were deceptively simple.
Pick any positive integer.

- If it's even, divide it by 2.
- If it's odd, multiply it by 3 and add 1.

Then, repeat these steps with the result, continuing indefinitely.

Curious, you picked number 12 to test and began the journey:

12 ➜ 6 ➜ 3 ➜ 10 ➜ 5 ➜ 16 ➜ 8 ➜ 4 ➜ 2 ➜ 1

Counting from the second number (6), it took 9 steps to reach 1, and each time the rules repeated, the number kept changing.
At first, the sequence seemed unpredictable — jumping up, down, and all over.
Yet, the conjecture claims that no matter the starting number, we'll always end at 1.

It was fascinating, but also puzzling.
Why does this always seem to work?
Could there be a number where the process breaks down, looping forever or escaping into infinity?
The notebook suggested solving this could reveal something profound — and with it, fame, [fortune][collatz-prize], and a place in history awaits whoever could unlock its secrets.

[collatz-prize]: https://mathprize.net/posts/collatz-conjecture/
4 changes: 2 additions & 2 deletions exercises/practice/collatz-conjecture/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,6 @@
]
},
"blurb": "Calculate the number of steps to reach 1 using the Collatz conjecture.",
"source": "An unsolved problem in mathematics named after mathematician Lothar Collatz",
"source_url": "https://en.wikipedia.org/wiki/3x_%2B_1_problem"
"source": "Wikipedia",
"source_url": "https://en.wikipedia.org/wiki/Collatz_conjecture"
}
48 changes: 33 additions & 15 deletions exercises/practice/eliuds-eggs/.docs/introduction.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,36 +12,54 @@ The position information encoding is calculated as follows:
2. Convert the number from binary to decimal.
3. Show the result on the display.

Example 1:
## Example 1

![Seven individual nest boxes arranged in a row whose first, third, fourth and seventh nests each have a single egg.](https://assets.exercism.org/images/exercises/eliuds-eggs/example-1-coop.svg)

```text
Chicken Coop:
_ _ _ _ _ _ _
|E| |E|E| | |E|
```

### Resulting Binary

![1011001](https://assets.exercism.org/images/exercises/eliuds-eggs/example-1-binary.svg)

```text
_ _ _ _ _ _ _
|1|0|1|1|0|0|1|
```

Resulting Binary:
1 0 1 1 0 0 1
### Decimal number on the display

Decimal number on the display:
89

Actual eggs in the coop:
### Actual eggs in the coop

4

## Example 2

![Seven individual nest boxes arranged in a row where only the fourth nest has an egg.](https://assets.exercism.org/images/exercises/eliuds-eggs/example-2-coop.svg)

```text
_ _ _ _ _ _ _
| | | |E| | | |
```

Example 2:
### Resulting Binary

![0001000](https://assets.exercism.org/images/exercises/eliuds-eggs/example-2-binary.svg)

```text
Chicken Coop:
_ _ _ _ _ _ _ _
| | | |E| | | | |
_ _ _ _ _ _ _
|0|0|0|1|0|0|0|
```

Resulting Binary:
0 0 0 1 0 0 0 0
### Decimal number on the display

Decimal number on the display:
16

Actual eggs in the coop:
### Actual eggs in the coop

1
```
2 changes: 1 addition & 1 deletion exercises/practice/grains/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -18,5 +18,5 @@
},
"blurb": "Calculate the number of grains of wheat on a chessboard given that the number on each square doubles.",
"source": "The CodeRanch Cattle Drive, Assignment 6",
"source_url": "https://coderanch.com/wiki/718824/Grains"
"source_url": "https://web.archive.org/web/20240908084142/https://coderanch.com/wiki/718824/Grains"
}
17 changes: 3 additions & 14 deletions exercises/practice/hamming/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,26 +1,15 @@
# Instructions

Calculate the Hamming Distance between two DNA strands.
Calculate the Hamming distance between two DNA strands.

Your body is made up of cells that contain DNA.
Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells.
In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime!

When cells divide, their DNA replicates too.
Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information.
If we compare two strands of DNA and count the differences between them we can see how many mistakes occurred.
This is known as the "Hamming Distance".

We read DNA using the letters C,A,G and T.
We read DNA using the letters C, A, G and T.
Two strands might look like this:

GAGCCTACTAACGGGAT
CATCGTAATGACGGCCT
^ ^ ^ ^ ^ ^^

They have 7 differences, and therefore the Hamming Distance is 7.

The Hamming Distance is useful for lots of things in science, not just biology, so it's a nice phrase to be familiar with :)
They have 7 differences, and therefore the Hamming distance is 7.

## Implementation notes

Expand Down
12 changes: 12 additions & 0 deletions exercises/practice/hamming/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Introduction

Your body is made up of cells that contain DNA.
Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells.
In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime!

When cells divide, their DNA replicates too.
Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information.
If we compare two strands of DNA and count the differences between them, we can see how many mistakes occurred.
This is known as the "Hamming distance".

The Hamming distance is useful in many areas of science, not just biology, so it's a nice phrase to be familiar with :)
2 changes: 1 addition & 1 deletion exercises/practice/hamming/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
".meta/example.zig"
]
},
"blurb": "Calculate the Hamming difference between two DNA strands.",
"blurb": "Calculate the Hamming distance between two DNA strands.",
"source": "The Calculating Point Mutations problem at Rosalind",
"source_url": "https://rosalind.info/problems/hamm/"
}
8 changes: 4 additions & 4 deletions exercises/practice/knapsack/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
# Instructions

Your task is to determine which items to take so that the total value of his selection is maximized, taking into account the knapsack's carrying capacity.
Your task is to determine which items to take so that the total value of her selection is maximized, taking into account the knapsack's carrying capacity.

Items will be represented as a list of items.
Each item will have a weight and value.
All values given will be strictly positive.
Bob can take only one of each item.
Lhakpa can take only one of each item.

For example:

Expand All @@ -21,5 +21,5 @@ Knapsack Maximum Weight: 10
```

For the above, the first item has weight 5 and value 10, the second item has weight 4 and value 40, and so on.
In this example, Bob should take the second and fourth item to maximize his value, which, in this case, is 90.
He cannot get more than 90 as his knapsack has a weight limit of 10.
In this example, Lhakpa should take the second and fourth item to maximize her value, which, in this case, is 90.
She cannot get more than 90 as her knapsack has a weight limit of 10.
12 changes: 7 additions & 5 deletions exercises/practice/knapsack/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
# Introduction

Bob is a thief.
After months of careful planning, he finally manages to crack the security systems of a fancy store.
Lhakpa is a [Sherpa][sherpa] mountain guide and porter.
After months of careful planning, the expedition Lhakpa works for is about to leave.
She will be paid the value she carried to the base camp.

In front of him are many items, each with a value and weight.
Bob would gladly take all of the items, but his knapsack can only hold so much weight.
Bob has to carefully consider which items to take so that the total value of his selection is maximized.
In front of her are many items, each with a value and weight.
Lhakpa would gladly take all of the items, but her knapsack can only hold so much weight.

[sherpa]: https://en.wikipedia.org/wiki/Sherpa_people#Mountaineering
2 changes: 1 addition & 1 deletion exercises/practice/leap/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -15,5 +15,5 @@
},
"blurb": "Determine whether a given year is a leap year.",
"source": "CodeRanch Cattle Drive, Assignment 3",
"source_url": "https://coderanch.com/t/718816/Leap"
"source_url": "https://web.archive.org/web/20240907033714/https://coderanch.com/t/718816/Leap"
}
11 changes: 5 additions & 6 deletions exercises/practice/luhn/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,10 @@
# Instructions

Given a number determine whether or not it is valid per the Luhn formula.
Determine whether a credit card number is valid according to the [Luhn formula][luhn].

The [Luhn algorithm][luhn] is a simple checksum formula used to validate a variety of identification numbers, such as credit card numbers and Canadian Social Insurance Numbers.
The number will be provided as a string.

The task is to check if a given string is valid.

## Validating a Number
## Validating a number

Strings of length 1 or less are not valid.
Spaces are allowed in the input, but they should be stripped before checking.
Expand All @@ -22,7 +20,8 @@ The first step of the Luhn algorithm is to double every second digit, starting f
We will be doubling

```text
4_3_ 3_9_ 0_4_ 6_6_
4539 3195 0343 6467
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ (double these)
```

If doubling the number results in a number greater than 9 then subtract 9 from the product.
Expand Down
11 changes: 11 additions & 0 deletions exercises/practice/luhn/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# Introduction

At the Global Verification Authority, you've just been entrusted with a critical assignment.
Across the city, from online purchases to secure logins, countless operations rely on the accuracy of numerical identifiers like credit card numbers, bank account numbers, transaction codes, and tracking IDs.
The Luhn algorithm is a simple checksum formula used to ensure these numbers are valid and error-free.

A batch of identifiers has just arrived on your desk.
All of them must pass the Luhn test to ensure they're legitimate.
If any fail, they'll be flagged as invalid, preventing errors or fraud, such as incorrect transactions or unauthorized access.

Can you ensure this is done right? The integrity of many services depends on you.
3 changes: 3 additions & 0 deletions exercises/practice/pig-latin/.meta/tests.toml
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,9 @@ description = "first letter and ay are moved to the end of words that start with
[bce94a7a-a94e-4e2b-80f4-b2bb02e40f71]
description = "first letter and ay are moved to the end of words that start with consonants -> word beginning with q without a following u"

[e59dbbe8-ccee-4619-a8e9-ce017489bfc0]
description = "first letter and ay are moved to the end of words that start with consonants -> word beginning with consonant and vowel containing qu"

[c01e049a-e3e2-451c-bf8e-e2abb7e438b8]
description = "some letter clusters are treated like a single consonant -> word beginning with ch"

Expand Down
7 changes: 7 additions & 0 deletions exercises/practice/pig-latin/test_pig_latin.zig
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,13 @@ test "first letter and ay are moved to the end of words that start with consonan
try testing.expectEqualStrings(expected, actual);
}

test "first letter and ay are moved to the end of words that start with consonants -> word beginning with consonant and vowel containing qu" {
const expected: []const u8 = "iquidlay";
const actual = try pig_latin.translate(testing.allocator, "liquid");
defer testing.allocator.free(actual);
try testing.expectEqualStrings(expected, actual);
}

test "some letter clusters are treated like a single consonant-word beginning with ch" {
const expected: []const u8 = "airchay";
const actual = try pig_latin.translate(testing.allocator, "chair");
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Instructions
# Description

A Pythagorean triplet is a set of three natural numbers, {a, b, c}, for which,

Expand Down
Loading

0 comments on commit 121a1ca

Please sign in to comment.