A minimal implementation of MCP (Model Context Protocol) using:
- Tavily for web search.
- Cherry Studio as the MCP client.
- API Key (OpenAI, Groq, Gemini, etc)
- Python 3.11
- uv
- Tavily-powered web search tool.
- Fully compatible with Cherry Studio via MCP.
git clone https://github.com/your-username/simple-mcp.git
cd simple-mcp
curl -Ls https://astral.sh/uv/install.sh | bash
Make sure ~/.local/bin
is in your PATH
:
export PATH="$HOME/.local/bin:$PATH"
uv venv
source .venv/bin/activate
uv pip install -e .
- Open Cherry Studio
- Go to Settings → MCP Servers → Add Server
- Configure as follows:
- Name:
simple-mpc
- Description:
first project
- Type:
STDIO
- Command:
/home/your-username/.local/bin/uv # <- path UV
- Arguments:
--directory /home/your-username/Projects/simple-mcp run get_stock_price.py
- Environment Variables:
TAVILY_API_KEY=your-tavily-api-key TAVILY_API_URL=https://api.tavily.com/search
- Click Save
- Activate the MCP toggle
Note: Replace /home/your-username/...
with your actual project path.
Example configuration:
- Windows: Download EXE
- macOS: Download DMG
- Linux: Download AppImage
chmod +x Cherry-Studio-1.1.17-x86_64.AppImage
./Cherry-Studio-1.1.17-x86_64.AppImage
please follow the tutorial below, you only need to change the name of the application with Cherry-Studio...AppImage
-
Cursor AI: From Installation to Mastery on Linux 2025 (Tutorial)
Note: Download image cherry.png (search on google) and move using following cmd
sudo mv cherry.png /opt/cherry.png
- get_articles
- get_stock_price
- get_stock_price_history
- compare_stocks