-
Notifications
You must be signed in to change notification settings - Fork 187
Tridagonal matrices and associated spmv kernel #957
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
3912f73
872777d
abb6904
9d8710b
9ae0554
fc61941
9b8f650
de3098b
6ead4ba
4698662
c9d2531
9e91af3
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,215 @@ | ||||||
--- | ||||||
title: specialmatrices | ||||||
--- | ||||||
|
||||||
# The `stdlib_specialmatrices` module | ||||||
|
||||||
[TOC] | ||||||
|
||||||
## Introduction | ||||||
|
||||||
The `stdlib_specialmatrices` module provides derived types and specialized drivers for highly structured matrices often encountered in scientific computing as well as control and signal processing applications. | ||||||
These include: | ||||||
|
||||||
- Tridiagonal matrices | ||||||
- Symmetric Tridiagonal matrices (not yet supported) | ||||||
- Circulant matrices (not yet supported) | ||||||
- Toeplitz matrices (not yet supported) | ||||||
- Hankel matrices (not yet supported) | ||||||
|
||||||
In addition, it also provides a `Poisson2D` matrix type (not yet supported) corresponding to the sparse block tridiagonal matrix obtained from discretizing the Laplace operator on a 2D grid with the standard second-order accurate central finite-difference scheme. | ||||||
|
||||||
## List of derived types for special matrices | ||||||
|
||||||
Below is a list of the currently supported derived types corresponding to different special matrices. | ||||||
Note that this module is under active development and this list will eventually grow. | ||||||
|
||||||
### Tridiagonal matrices {#Tridiagonal} | ||||||
|
||||||
#### Status | ||||||
|
||||||
Experimental | ||||||
|
||||||
#### Description | ||||||
|
||||||
Tridiagonal matrices are ubiquituous in scientific computing and often appear when discretizing 1D differential operators. | ||||||
A generic tridiagonal matrix has the following structure | ||||||
$$ | ||||||
A | ||||||
= | ||||||
\begin{bmatrix} | ||||||
a_1 & b_1 \\ | ||||||
c_1 & a_2 & b_2 \\ | ||||||
& \ddots & \ddots & \ddots \\ | ||||||
& & c_{n-2} & a_{n-1} & b_{n-1} \\ | ||||||
& & & c_{n-1} & a_n | ||||||
\end{bmatrix}. | ||||||
$$ | ||||||
Hence, only one vector of size `n` and two of size `n-1` need to be stored to fully represent the matrix. | ||||||
This particular structure also lends itself to specialized implementations for many linear algebra tasks. | ||||||
Interfaces to the most common ones will soon be provided by `stdlib_specialmatrices`. | ||||||
To date, `stdlib_specialmatrices` supports the following data types: | ||||||
|
||||||
- `Tridiagonal_sp_type` : Tridiagonal matrix of size `n` with `real`/`single precision` data. | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
Similar for following rows |
||||||
- `Tridiagonal_dp_type` : Tridiagonal matrix of size `n` with `real`/`double precision` data. | ||||||
- `Tridiagonal_xdp_type` : Tridiagonal matrix of size `n` with `real`/`extended precision` data. | ||||||
- `Tridiagonal_qp_type` : Tridiagonal matrix of size `n` with `real`/`quadruple precision` data. | ||||||
- `Tridiagonal_csp_type` : Tridiagonal matrix of size `n` with `complex`/`single precision` data. | ||||||
- `Tridiagonal_cdp_type` : Tridiagonal matrix of size `n` with `complex`/`double precision` data. | ||||||
- `Tridiagonal_cxdp_type` : Tridiagonal matrix of size `n` with `complex`/`extended precision` data. | ||||||
- `Tridiagonal_cqp_type` : Tridiagonal matrix of size `n` with `complex`/`quadruple precision` data. | ||||||
|
||||||
|
||||||
#### Syntax | ||||||
|
||||||
- To construct a tridiagonal matrix from already allocated arrays `dl` (lower diagonal, size `n-1`), `dv` (main diagonal, size `n`) and `du` (upper diagonal, size `n-1`): | ||||||
|
||||||
`A = ` [[stdlib_specialmatrices(module):Tridiagonal(interface)]] `(dl, dv, du)` | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
|
||||||
- To construct a tridiagonal matrix of size `n x n` with constant diagonal elements `dl`, `dv`, and `du`: | ||||||
|
||||||
`A = ` [[stdlib_specialmatrices(module):Tridiagonal(interface)]] `(dl, dv, du, n)` | ||||||
|
||||||
#### Example | ||||||
|
||||||
```fortran | ||||||
{!example/specialmatrices/example_tridiagonal_dp_type.f90!} | ||||||
``` | ||||||
|
||||||
## Specialized drivers for linear algebra tasks | ||||||
|
||||||
Below is a list of all the specialized drivers for linear algebra tasks currently provided by the `stdlib_specialmatrices` module. | ||||||
|
||||||
### Matrix-vector products with `spmv` {#spmv} | ||||||
|
||||||
#### Status | ||||||
|
||||||
Experimental | ||||||
|
||||||
#### Description | ||||||
|
||||||
With the exception of `extended precision` and `quadruple precision`, all the types provided by `stdlib_specialmatrices` benefit from specialized kernels for matrix-vector products accessible via the common `spmv` interface. | ||||||
|
||||||
- For `Tridiagonal` matrices, the LAPACK `lagtm` backend is being used. | ||||||
|
||||||
#### Syntax | ||||||
|
||||||
`call ` [[stdlib_specialmatrices(module):spmv(interface)]] `(A, x, y [, alpha, beta, op])` | ||||||
|
||||||
#### Arguments | ||||||
|
||||||
- `A` : Shall be a matrix of one of the types provided by `stdlib_specialmatrices`. It is an `intent(in)` argument. | ||||||
|
||||||
- `x` : Shall be a rank-1 or rank-2 array with the same kind as `A`. It is an `intent(in)` argument. | ||||||
|
||||||
- `y` : Shall be a rank-1 or rank-2 array with the same kind as `A`. It is an `intent(inout)` argument. | ||||||
|
||||||
- `alpha` (optional) : Scalar value of the same type as `x`. It is an `intent(in)` argument. By default, `alpha = 1`. | ||||||
|
||||||
- `beta` (optional) : Scalar value of the same type as `y`. It is an `intent(in)` argument. By default `beta = 0`. | ||||||
|
||||||
- `op` (optional) : In-place operator identifier. Shall be a character(1) argument. It can have any of the following values: `N`: no transpose, `T`: transpose, `H`: hermitian or complex transpose. | ||||||
|
||||||
@warning | ||||||
Due to some underlying `lapack`-related designs, `alpha` and `beta` can only take values in `[-1, 0, 1]` for `Tridiagonal` and `SymTridiagonal` matrices. See `lagtm` for more details. | ||||||
@endwarning | ||||||
|
||||||
#### Examples | ||||||
|
||||||
```fortran | ||||||
{!example/specialmatrices/example_specialmatrices_dp_spmv.f90!} | ||||||
``` | ||||||
|
||||||
## Utility functions | ||||||
|
||||||
### `dense` : converting a special matrix to a standard Fortran array {#dense} | ||||||
|
||||||
#### Status | ||||||
|
||||||
Experimental | ||||||
|
||||||
#### Description | ||||||
|
||||||
Utility function to convert all the matrix types provided by `stdlib_specialmatrices` to a standard rank-2 array of the appropriate kind. | ||||||
|
||||||
#### Syntax | ||||||
|
||||||
`B = ` [[stdlib_specialmatrices(module):dense(interface)]] `(A)` | ||||||
|
||||||
#### Arguments | ||||||
|
||||||
- `A` : Shall be a matrix of one of the types provided by `stdlib_specialmatrices`. It is an `intent(in)` argument. | ||||||
|
||||||
- `B` : Shall be a rank-2 allocatable array of the appropriate `real` or `complex` kind. | ||||||
|
||||||
### `transpose` : Transposition of a special matrix {#transpose} | ||||||
|
||||||
#### Status | ||||||
|
||||||
Experimental | ||||||
|
||||||
#### Description | ||||||
|
||||||
Utility function returning the transpose of a special matrix. The returned matrix is of the same type and kind as the input one. | ||||||
|
||||||
#### Syntax | ||||||
|
||||||
`B = ` [[stdlib_specialmatrices(module):transpose(interface)]] `(A)` | ||||||
|
||||||
#### Arguments | ||||||
|
||||||
- `A` : Shall be a matrix of one of the types provided by `stdlib_specialmatrices`. It is an `intent(in)` argument. | ||||||
|
||||||
- `B` : Shall be a matrix of one of the same type and kind as `A`. | ||||||
|
||||||
### `hermitian` : Complex-conjugate transpose of a special matrix {#hermitian} | ||||||
|
||||||
#### Status | ||||||
|
||||||
Experimental | ||||||
|
||||||
#### Description | ||||||
|
||||||
Utility function returning the complex-conjugate transpose of a special matrix. The returned matrix is of the same type and kind as the input one. For real-valued matrices, `hermitian` is equivalent to `transpose`. | ||||||
|
||||||
#### Syntax | ||||||
|
||||||
`B = ` [[stdlib_specialmatrices(module):hermitian(interface)]] `(A)` | ||||||
|
||||||
#### Arguments | ||||||
|
||||||
- `A` : Shall be a matrix of one of the types provided by `stdlib_specialmatrices`. It is an `intent(in)` argument. | ||||||
|
||||||
- `B` : Shall be a matrix of one of the same type and kind as `A`. | ||||||
|
||||||
### Operator overloading (`+`, `-`, `*`) {#operators} | ||||||
|
||||||
#### Status | ||||||
|
||||||
Experimental | ||||||
|
||||||
#### Description | ||||||
|
||||||
The definition of all standard artihmetic operators have been overloaded to be applicable for the matrix types defined by `stdlib_specialmatrices`: | ||||||
|
||||||
- Overloading the `+` operator for adding two matrices of the same type and kind. | ||||||
- Overloading the `-` operator for subtracting two matrices of the same type and kind. | ||||||
- Overloading the `*` for scalar-matrix multiplication. | ||||||
|
||||||
#### Syntax | ||||||
|
||||||
- Adding two matrices of the same type: | ||||||
|
||||||
`C = A` [[stdlib_specialmatrices(module):operator(+)(interface)]] `B` | ||||||
|
||||||
- Subtracting two matrices of the same type: | ||||||
|
||||||
`C = A` [[stdlib_specialmatrices(module):operator(-)(interface)]] `B` | ||||||
|
||||||
- Scalar multiplication | ||||||
|
||||||
`B = alpha` [[stdlib_specialmatrices(module):operator(*)(interface)]] `A` | ||||||
|
||||||
@note | ||||||
For addition (`+`) and subtraction (`-`), the matrices `A`, `B` and `C` all need to be of the same type and kind. For scalar multiplication (`*`), `A` and `B` need to be of the same type and kind, while `alpha` is either `real` or `complex` (with the same kind again) depending on the type being used. | ||||||
@endnote |
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Sorry about this. I did not realized I had |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,49 +1,49 @@ | ||
program example_sparse_data_accessors | ||
use stdlib_linalg_constants, only: dp | ||
use stdlib_sparse | ||
implicit none | ||
use stdlib_linalg_constants, only: dp | ||
use stdlib_sparse | ||
implicit none | ||
|
||
real(dp) :: mat(2,2) | ||
real(dp), allocatable :: dense(:,:) | ||
type(CSR_dp_type) :: CSR | ||
type(COO_dp_type) :: COO | ||
integer :: i, j, locdof(2) | ||
real(dp) :: mat(2, 2) | ||
real(dp), allocatable :: dense_matrix(:, :) | ||
type(CSR_dp_type) :: CSR | ||
type(COO_dp_type) :: COO | ||
integer :: i, j, locdof(2) | ||
|
||
! Initial data | ||
mat(:,1) = [1._dp,2._dp] | ||
mat(:,2) = [2._dp,1._dp] | ||
allocate(dense(5,5) , source = 0._dp) | ||
do i = 0, 3 | ||
dense(1+i:2+i,1+i:2+i) = dense(1+i:2+i,1+i:2+i) + mat | ||
end do | ||
! Initial data | ||
mat(:, 1) = [1._dp, 2._dp] | ||
mat(:, 2) = [2._dp, 1._dp] | ||
allocate (dense_matrix(5, 5), source=0._dp) | ||
do i = 0, 3 | ||
dense_matrix(1 + i:2 + i, 1 + i:2 + i) = dense_matrix(1 + i:2 + i, 1 + i:2 + i) + mat | ||
end do | ||
|
||
print *, 'Original Matrix' | ||
do j = 1 , 5 | ||
print '(5f8.1)',dense(j,:) | ||
end do | ||
print *, 'Original Matrix' | ||
do j = 1, 5 | ||
print '(5f8.1)', dense_matrix(j, :) | ||
end do | ||
|
||
! Initialize CSR data and reset dense reference matrix | ||
call dense2coo(dense,COO) | ||
call coo2csr(COO,CSR) | ||
CSR%data = 0._dp | ||
dense = 0._dp | ||
! Initialize CSR data and reset dense reference matrix | ||
call dense2coo(dense_matrix, COO) | ||
call coo2csr(COO, CSR) | ||
CSR%data = 0._dp | ||
dense_matrix = 0._dp | ||
|
||
! Iteratively add blocks of data | ||
do i = 0, 3 | ||
locdof(1:2) = [1+i,2+i] | ||
call CSR%add(locdof,locdof,mat) | ||
! lets print a dense view of every step | ||
call csr2dense(CSR,dense) | ||
print '(A,I2)', 'Add block :', i+1 | ||
do j = 1 , 5 | ||
print '(5f8.1)',dense(j,:) | ||
end do | ||
end do | ||
! Iteratively add blocks of data | ||
do i = 0, 3 | ||
locdof(1:2) = [1 + i, 2 + i] | ||
call CSR%add(locdof, locdof, mat) | ||
! lets print a dense view of every step | ||
call csr2dense(CSR, dense_matrix) | ||
print '(A,I2)', 'Add block :', i + 1 | ||
do j = 1, 5 | ||
print '(5f8.1)', dense_matrix(j, :) | ||
end do | ||
end do | ||
|
||
! Request values from the matrix | ||
print *, '' | ||
print *, 'within sparse pattern :',CSR%at(2,1) | ||
print *, 'outside sparse pattern :',CSR%at(5,2) | ||
print *, 'outside matrix pattern :',CSR%at(7,7) | ||
end program example_sparse_data_accessors | ||
! Request values from the matrix | ||
print *, '' | ||
print *, 'within sparse pattern :', CSR%at(2, 1) | ||
print *, 'outside sparse pattern :', CSR%at(5, 2) | ||
print *, 'outside matrix pattern :', CSR%at(7, 7) | ||
|
||
end program example_sparse_data_accessors |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
ADD_EXAMPLE(specialmatrices_dp_spmv) | ||
ADD_EXAMPLE(tridiagonal_dp_type) |
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,26 @@ | ||||||
program example_tridiagonal_matrix | ||||||
use stdlib_linalg_constants, only: dp | ||||||
use stdlib_specialmatrices | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
implicit none | ||||||
|
||||||
integer, parameter :: n = 5 | ||||||
type(Tridiagonal_dp_type) :: A | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
real(dp) :: dl(n - 1), dv(n), du(n - 1) | ||||||
real(dp) :: x(n), y(n), y_dense(n) | ||||||
integer :: i | ||||||
|
||||||
! Create an arbitrary tridiagonal matrix. | ||||||
dl = [(i, i=1, n - 1)]; dv = [(2*i, i=1, n)]; du = [(3*i, i=1, n - 1)] | ||||||
A = Tridiagonal(dl, dv, du) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
|
||||||
! Initialize vectors. | ||||||
x = 1.0_dp; y = 0.0_dp; y_dense = 0.0_dp | ||||||
|
||||||
! Perform matrix-vector products. | ||||||
call spmv(A, x, y) | ||||||
y_dense = matmul(dense(A), x) | ||||||
|
||||||
print *, 'dense :', y_dense | ||||||
print *, 'Tridiagonal :', y | ||||||
|
||||||
end program example_tridiagonal_matrix |
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,18 @@ | ||||||
program example_tridiagonal_matrix | ||||||
use stdlib_linalg_constants, only: dp | ||||||
use stdlib_specialmatrices | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
implicit none | ||||||
|
||||||
integer, parameter :: n = 5 | ||||||
type(Tridiagonal_dp_type) :: A | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
real(dp) :: dl(n - 1), dv(n), du(n - 1) | ||||||
|
||||||
! Generate random tridiagonal elements. | ||||||
call random_number(dl) | ||||||
call random_number(dv) | ||||||
call random_number(du) | ||||||
|
||||||
! Create the corresponding Tridiagonal matrix. | ||||||
A = Tridiagonal(dl, dv, du) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
|
||||||
end program example_tridiagonal_matrix |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.