-
-
Notifications
You must be signed in to change notification settings - Fork 0
Example Usage
Vansh Gupta edited this page Jul 20, 2022
·
2 revisions
This is a basic example which shows you how to use the package in one scenario:
library(STE)
## Basic Example Code:
# Load cb_startups as a dataframe from cb_startups.Rdata file.
load("cb_startups.Rdata")
# Estimate the main effect of the treatment.
reg <- estimate_main_effect(
y_var = "equity_growth",
treatment_var = "bearly_stage_has_vc",
X = cb_startups[, ml_vars],
data_df = cb_startups
)
print(summary(reg))
# Estimate the propensity score of the treatment.
p_scores <- estimate_propensity(
treatment = cb_startups$bearly_stage_has_vc,
X = cb_startups[, ml_vars]
)
# Estimate the strategic treatment effect.
cb_startups <- estimate_ste(
y = cb_startups$equity_growth,
treatment = cb_startups$bearly_stage_has_vc,
propensity = p_scores,
df = cb_startups
)
# Remove NA values for analysis.
cb_startups.clean <- cb_startups %>%
filter(!is.na(ste))
# Study the determinants of STE.
ste_features <- STE::get_top_ste_determinants(
ste = cb_startups.clean$ste,
X = cb_startups.clean[, ml_vars],
teffect = cb_startups.clean$teffect
)
View(ste_features)
# Estimate the coherence value.
ml_vars.no_inter <- ml_vars[grep("^[^X]",ml_vars)]
coherence_value <- STE::estimate_coherence(
y = cb_startups.clean$teffect,
x = cb_startups.clean[, ml_vars],
x.no_inter = cb_startups.clean[, ml_vars.no_inter]
)
print(paste0("Coherence Value: ",coherence_value))