foamlib provides a simple, modern, ergonomic and fast Python interface for interacting with OpenFOAM.

Parsing a volVectorField with 200k cells.1
foamlib is a Python package designed to simplify the manipulation of OpenFOAM cases and files. Its standalone parser makes it easy to work with OpenFOAMβs input/output files from Python, while its case-handling capabilities facilitate various execution workflowsβreducing boilerplate code and enabling efficient Python-based pre- and post-processing, as well as simulation management.
Compared to PyFoam and other similar tools like fluidfoam, fluidsimfoam, and Ofpp, foamlib offers advantages such as modern Python compatibility, support for binary-formatted fields, a fully type-hinted API, and asynchronous operations; making OpenFOAM workflows more accessible and streamlined.
foamlib offers the following Python classes:
FoamFile
(andFoamFieldFile
): read-write access to OpenFOAM configuration and field files as if they were Pythondict
s, usingfoamlib
's own parser and in-place editor. Supports ASCII and binary field formats (with or without compression).FoamCase
: a class for configuring, running, and accessing the results of OpenFOAM cases.AsyncFoamCase
: variant ofFoamCase
with asynchronous methods for running multiple cases at once.AsyncSlurmFoamCase
: subclass ofAsyncFoamCase
used for running cases on a Slurm cluster.
import os
from pathlib import Path
from foamlib import FoamCase
pitz_tutorial = FoamCase(Path(os.environ["FOAM_TUTORIALS"]) / "incompressible/simpleFoam/pitzDaily")
my_pitz = pitz_tutorial.clone("myPitz")
my_pitz.run()
latest_time = my_pitz[-1]
p = latest_time["p"]
U = latest_time["U"]
print(p.internal_field)
print(U.internal_field)
my_pitz.clean()
my_pitz.control_dict["writeInterval"] = 10
with my_pitz.fv_schemes as f:
f["gradSchemes"]["default"] = f["divSchemes"]["default"]
f["snGradSchemes"]["default"] = "uncorrected"
import asyncio
from foamlib import AsyncFoamCase
async def run_case():
my_pitz_async = AsyncFoamCase(my_pitz)
await my_pitz_async.run()
asyncio.run(run_case())
π’ Parse a field using the FoamFieldFile
class directly
from foamlib import FoamFieldFile
U = FoamFieldFile(Path(my_pitz) / "0/U")
print(U.internal_field)
import os
from pathlib import Path
from foamlib import AsyncSlurmFoamCase
from scipy.optimize import differential_evolution
base = AsyncSlurmFoamCase(Path(os.environ["FOAM_TUTORIALS"]) / "incompressible/simpleFoam/pitzDaily")
async def cost(x):
async with base.clone() as clone:
clone[0]["U"].boundary_field["inlet"].value = [x[0], 0, 0]
await clone.run(fallback=True) # Run locally if Slurm is not available
return abs(clone[-1]["U"].internal_field[0][0])
result = differential_evolution(cost, bounds=[(-1, 1)], workers=AsyncSlurmFoamCase.map, polish=False)
#!/usr/bin/env python3
from pathlib import Path
from foamlib import FoamCase
case = FoamCase(Path(__file__).parent)
# Any additional configuration here
case.run()
The following is a fully self-contained example that demonstrates how to create an OpenFOAM case from scratch, run it, and analyze the results.
Example
#!/usr/bin/env python3
"""Check the diffusion of a scalar field in a scalarTransportFoam case."""
import shutil
from pathlib import Path
import numpy as np
from scipy.special import erfc
from foamlib import FoamCase
path = Path(__file__).parent / "diffusionCheck"
shutil.rmtree(path, ignore_errors=True)
path.mkdir(parents=True)
(path / "system").mkdir()
(path / "constant").mkdir()
(path / "0").mkdir()
case = FoamCase(path)
with case.control_dict as f:
f["application"] = "scalarTransportFoam"
f["startFrom"] = "latestTime"
f["stopAt"] = "endTime"
f["endTime"] = 5
f["deltaT"] = 1e-3
f["writeControl"] = "adjustableRunTime"
f["writeInterval"] = 1
f["purgeWrite"] = 0
f["writeFormat"] = "ascii"
f["writePrecision"] = 6
f["writeCompression"] = False
f["timeFormat"] = "general"
f["timePrecision"] = 6
f["adjustTimeStep"] = False
f["runTimeModifiable"] = False
with case.fv_schemes as f:
f["ddtSchemes"] = {"default": "Euler"}
f["gradSchemes"] = {"default": "Gauss linear"}
f["divSchemes"] = {"default": "none", "div(phi,U)": "Gauss linear", "div(phi,T)": "Gauss linear"}
f["laplacianSchemes"] = {"default": "Gauss linear corrected"}
with case.fv_solution as f:
f["solvers"] = {"T": {"solver": "PBiCG", "preconditioner": "DILU", "tolerance": 1e-6, "relTol": 0}}
with case.block_mesh_dict as f:
f["scale"] = 1
f["vertices"] = [
[0, 0, 0],
[1, 0, 0],
[1, 0.5, 0],
[1, 1, 0],
[0, 1, 0],
[0, 0.5, 0],
[0, 0, 0.1],
[1, 0, 0.1],
[1, 0.5, 0.1],
[1, 1, 0.1],
[0, 1, 0.1],
[0, 0.5, 0.1],
]
f["blocks"] = [
"hex", [0, 1, 2, 5, 6, 7, 8, 11], [400, 20, 1], "simpleGrading", [1, 1, 1],
"hex", [5, 2, 3, 4, 11, 8, 9, 10], [400, 20, 1], "simpleGrading", [1, 1, 1],
]
f["edges"] = []
f["boundary"] = [
("inletUp", {"type": "patch", "faces": [[5, 4, 10, 11]]}),
("inletDown", {"type": "patch", "faces": [[0, 5, 11, 6]]}),
("outletUp", {"type": "patch", "faces": [[2, 3, 9, 8]]}),
("outletDown", {"type": "patch", "faces": [[1, 2, 8, 7]]}),
("walls", {"type": "wall", "faces": [[4, 3, 9, 10], [0, 1, 7, 6]]}),
("frontAndBack", {"type": "empty", "faces": [[0, 1, 2, 5], [5, 2, 3, 4], [6, 7, 8, 11], [11, 8, 9, 10]]}),
]
f["mergePatchPairs"] = []
with case.transport_properties as f:
f["DT"] = f.Dimensioned(1e-3, f.DimensionSet(length=2, time=-1), "DT")
with case[0]["U"] as f:
f.dimensions = f.DimensionSet(length=1, time=-1)
f.internal_field = [1, 0, 0]
f.boundary_field = {
"inletUp": {"type": "fixedValue", "value": [1, 0, 0]},
"inletDown": {"type": "fixedValue", "value": [1, 0, 0]},
"outletUp": {"type": "zeroGradient"},
"outletDown": {"type": "zeroGradient"},
"walls": {"type": "zeroGradient"},
"frontAndBack": {"type": "empty"},
}
with case[0]["T"] as f:
f.dimensions = f.DimensionSet(temperature=1)
f.internal_field = 0
f.boundary_field = {
"inletUp": {"type": "fixedValue", "value": 0},
"inletDown": {"type": "fixedValue", "value": 1},
"outletUp": {"type": "zeroGradient"},
"outletDown": {"type": "zeroGradient"},
"walls": {"type": "zeroGradient"},
"frontAndBack": {"type": "empty"},
}
case.run()
x, y, z = case[0].cell_centers().internal_field.T
end = x == x.max()
x = x[end]
y = y[end]
z = z[end]
DT = case.transport_properties["DT"].value
U = case[0]["U"].internal_field[0]
for time in case[1:]:
if U*time.time < 2*x.max():
continue
T = time["T"].internal_field[end]
analytical = 0.5 * erfc((y - 0.5) / np.sqrt(4 * DT * x/U))
if np.allclose(T, analytical, atol=0.1):
print(f"Time {time.time}: OK")
else:
raise RuntimeError(f"Time {time.time}: {T} != {analytical}")
For more information on how to use foamlibs's classes and methods, check out the documentation.
If you have any questions or need help, feel free to open a discussion.
If you believe you have found a bug in foamlib, please open an issue.
You're welcome to contribute to foamlib! Check out the contributing guidelines for more information.
[1] foamlib 0.8.1 vs PyFoam 2023.7 on a MacBook Air (2020, M1) with 8 GB of RAM. Benchmark script.