Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 4 additions & 10 deletions tools/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5080,15 +5080,6 @@ int main(int argc, char ** argv) {

const json body = json::parse(req.body);

// TODO: implement
//int top_n = 1;
//if (body.count("top_n") != 1) {
// top_n = body.at("top_n");
//} else {
// res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
// return;
//}

// if true, use TEI API format, otherwise use Jina API format
// Jina: https://jina.ai/reranker/
// TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
Expand All @@ -5113,6 +5104,8 @@ int main(int argc, char ** argv) {
return;
}

int top_n = json_value(body, "top_n", (int)documents.size());

// create and queue the task
json responses = json::array();
bool error = false;
Expand Down Expand Up @@ -5153,7 +5146,8 @@ int main(int argc, char ** argv) {
body,
responses,
is_tei_format,
documents);
documents,
top_n);

res_ok(res, root);
};
Expand Down
42 changes: 42 additions & 0 deletions tools/server/tests/unit/test_rerank.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,3 +102,45 @@ def test_rerank_usage(query, doc1, doc2, n_tokens):
assert res.status_code == 200
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
assert res.body['usage']['prompt_tokens'] == n_tokens


@pytest.mark.parametrize("top_n,expected_len", [
(None, len(TEST_DOCUMENTS)), # no top_n parameter
(2, 2),
(4, 4),
(99, len(TEST_DOCUMENTS)), # higher than available docs
])
def test_rerank_top_n(top_n, expected_len):
global server
server.start()
data = {
"query": "Machine learning is",
"documents": TEST_DOCUMENTS,
}
if top_n is not None:
data["top_n"] = top_n

res = server.make_request("POST", "/rerank", data=data)
assert res.status_code == 200
assert len(res.body["results"]) == expected_len


@pytest.mark.parametrize("top_n,expected_len", [
(None, len(TEST_DOCUMENTS)), # no top_n parameter
(2, 2),
(4, 4),
(99, len(TEST_DOCUMENTS)), # higher than available docs
])
def test_rerank_tei_top_n(top_n, expected_len):
global server
server.start()
data = {
"query": "Machine learning is",
"texts": TEST_DOCUMENTS,
}
if top_n is not None:
data["top_n"] = top_n

res = server.make_request("POST", "/rerank", data=data)
assert res.status_code == 200
assert len(res.body) == expected_len
73 changes: 35 additions & 38 deletions tools/server/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -849,47 +849,44 @@ static json format_response_rerank(
const json & request,
const json & ranks,
bool is_tei_format,
std::vector<std::string> & texts) {
json res;
if (is_tei_format) {
// TEI response format
res = json::array();
bool return_text = json_value(request, "return_text", false);
for (const auto & rank : ranks) {
int index = json_value(rank, "index", 0);
json elem = json{
{"index", index},
{"score", json_value(rank, "score", 0.0)},
};
if (return_text) {
elem["text"] = std::move(texts[index]);
}
res.push_back(elem);
}
} else {
// Jina response format
json results = json::array();
int32_t n_tokens = 0;
for (const auto & rank : ranks) {
results.push_back(json{
{"index", json_value(rank, "index", 0)},
{"relevance_score", json_value(rank, "score", 0.0)},
});

n_tokens += json_value(rank, "tokens_evaluated", 0);
}

res = json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json{
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"results", results}
std::vector<std::string> & texts,
int top_n) {
int32_t n_tokens = 0;
bool return_text = is_tei_format && json_value(request, "return_text", false);
std::vector<json> elements; // Temporary vector to hold unsorted elements
std::string score_label = is_tei_format ? "score" : "relevance_score";
for (const auto & rank : ranks) {
int index = json_value(rank, "index", 0);
json elem = json{
{"index", index},
{score_label, json_value(rank, "score", 0.0)},
};
n_tokens += json_value(rank, "tokens_evaluated", 0);
if (return_text) {
elem["text"] = std::move(texts[index]);
}
elements.push_back(elem);
}

std::sort(elements.begin(), elements.end(), [score_label](const json& a, const json& b) {
return json_value(a, score_label, 0.0) > json_value(b, score_label, 0.0);
});

elements.resize(std::min(top_n, (int)elements.size()));
json results = elements;

if (is_tei_format) return results;

json res = json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json{
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"results", results}
};

return res;
}

Expand Down