-
Notifications
You must be signed in to change notification settings - Fork 35
140328160246 alexArch report page 5d05da0dfd
Alex Sanchez-Stern edited this page Mar 28, 2014
·
1 revision
2014 3 28, 15:56:18
Commit: 5d05da0dfdb80fcd05919daad6a637f0bd004a3 on report-pag
Test Name | Error Improvement | Crashed? |
Reducing (a+1)^2 - 1 | 0.04967709885742673 | #f |
Canceling after reassociation and commutation | +inf.0 | #f |
Canceling after reassociation | 0.0657030223390276 | #f |
Test Kahan's classic (exp(x) - 1) / x | 0.4032258064516129 | #f |
Hamming (NMSE) example in section 3.11 | 0.05938242280285035 | #f |
Hamming (NMSE) problem 3.3.7, e^x - 2 + e^-x | 1.2658227848101267 | #f |
Hamming (NMSE) problem 3.3.6, ln(N + 1) - ln(N) | 25.0 | #f |
Hamming (NMSE) problem 3.3.4, ³√(x + 1) - ³√x | -6.25 | #f |
Hamming (NMSE) problem 3.3.3, 1/(x + 1) - 2/x + 1/(x - 1) | -25.0 | #f |
Hamming (NMSE) problem 3.3.1, 1/(x + 1) - 1/x | 0.19569471624266144 | #f |
Hamming (NMSE) example 3.6, 1/√(x + 1) - 1/√x | 0.1926782273603083 | #f |
Hamming (NMSE) example 3.5, atan(N + 1) - atan(N) | -16.666666666666668 | #f |
Hamming (NMSE) example 3.4, (1 - cos(x)) / sin(x) | +inf.0 | #f |
Hamming (NMSE) example 3.2, sin(x) / x | +inf.0 | #f |
Hamming (NMSE) example 3.1, √(x+1) - √x | 0.049164208456243856 | #f |
Hamming (NMSE) problem 3.4.5, (x - sin(x)) / (x - tan(x)) | 3.7037037037037037 | #f |
Hamming (NMSE) problem 3.4.4, √(e^2x - 1 / e^x - 1) | 0.041736227045075125 | #f |
Hamming (NMSE) problem 3.4.3, log(1 - x / 1 + x) | 20.0 | #f |
Hamming (NMSE) problem 3.4.1, (1 - (cos x)) / x^2 | 1.0416666666666667 | #f |
Hamming (NMSE) example 3.10, ln(1 - x)/ln(1+x) | 0.4048582995951417 | #f |
Hamming (NMSE) example 3.9, 1/x - ctn(x) | 50.0 | #f |
Hamming (NMSE) example 3.8, (N+1) ln(N+1) - N ln(N) - 1 | 14.285714285714286 | #f |
Hamming (NMSE) example 3.7, e^x - x | -5.882352941176471 | #f |
/lib/function/arithmetic/cube.js math.cube for real arguments | +inf.0 | #f |
Code from GNU Octave 3.8, lo-specfun.cc, expm1 | N/A | #t |
Test from Benchmark.scala from Rosa | 33.333333333333336 | #f |