-
Notifications
You must be signed in to change notification settings - Fork 39
Try search #546
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Try search #546
Changes from 2 commits
Commits
Show all changes
13 commits
Select commit
Hold shift + click to select a range
cf62c92
update_1
SinpackKonmakan ea54ee4
try_search
SinpackKonmakan 9202a04
Merge branch 'main' into try_search
wenhuach21 eaff00d
update
SinpackKonmakan 5a144eb
update
SinpackKonmakan 7d92e16
Merge branch 'try_search' of https://github.com/SinpackKonmakan/auto-…
SinpackKonmakan 4407f30
update
SinpackKonmakan f59a1da
update
SinpackKonmakan a3143db
1
SinpackKonmakan 71191b8
problem code
SinpackKonmakan f875592
update
SinpackKonmakan 7a3f7ef
update_search
SinpackKonmakan 5b6917b
Merge branch 'intel:main' into try_search
SinpackKonmakan File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -15,7 +15,18 @@ | |
import torch | ||
from .utils import round_ste, reshape_pad_tensor_by_group_size, revert_tensor_by_pad | ||
from auto_round.data_type.register import register_dtype | ||
|
||
import numpy as np | ||
from concurrent.futures import ProcessPoolExecutor | ||
QK_K = 256 | ||
K_SCALE_SIZE = 12 | ||
GGML_QUANT_SIZES = { | ||
"bf16": (1, 2), | ||
"q4_0": (32, 2 + 16), | ||
"q4_1": (32, 2 + 2 + 16), | ||
"q4_k": (256, 2 + 2 + QK_K//2 + 12), | ||
"q2_k": (256, 2 + 2 + QK_K//16 + QK_K//4), | ||
"q8_0": (32, 2 + 32) | ||
} | ||
|
||
@register_dtype("int_sym") | ||
def quant_tensor_sym(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_scale=1.0, scale_dtype=torch.float16, | ||
|
@@ -72,6 +83,62 @@ def double_quant_tensor(tensor, bits, q_scale_thresh): | |
qdq_tensor = torch.clamp(round_ste(tensor / scale), max=maxq) * scale | ||
return qdq_tensor, scale | ||
|
||
def make_qkx2_quants(data, weight, nmax, group_size, rmin=-1, rdelta=0.1, nstep=20, use_mad=False): | ||
group_min = np.min(data) | ||
group_max = np.max(data) | ||
|
||
sum_w = np.sum(weight) | ||
sum_x = np.sum(weight * data) | ||
|
||
group_min = min(group_min, 0) | ||
if group_min == group_max: | ||
L = np.zeros(group_size, dtype=np.uint8) | ||
the_min = -group_min | ||
return 0.0, L, the_min | ||
|
||
iscale = nmax / (group_max - group_min) | ||
scale = 1 / iscale | ||
|
||
l_values = np.round(iscale * (data-group_min)) | ||
L = np.clip(l_values, 0, nmax).astype(np.uint8) | ||
|
||
diffs = scale * L + group_min - data | ||
diffs = np.abs(diffs) if use_mad else diffs**2 | ||
best_mad = np.sum(weight * diffs) | ||
|
||
if nstep < 1: | ||
the_min = -group_min | ||
return scale, L, the_min | ||
|
||
for step in range(nstep): | ||
iscale = (rmin + rdelta * step + nmax) / (group_max - group_min) | ||
l_values = np.round(iscale * (data - group_min)) | ||
Laux = np.clip(l_values, 0, nmax).astype(np.uint8) | ||
|
||
sum_l = np.sum(weight * Laux) | ||
sum_l2 = np.sum(weight * Laux**2) | ||
sum_xl = np.sum(weight * Laux * data) | ||
|
||
D = sum_w * sum_l2 - sum_l * sum_l | ||
if D > 0: | ||
this_scale = (sum_w * sum_xl - sum_x * sum_l) / D | ||
this_min = (sum_l2 * sum_x - sum_l * sum_xl) / D | ||
if this_min > 0: | ||
this_min = 0 | ||
this_scale = sum_xl / sum_l2 | ||
|
||
diffs = this_scale * Laux + this_min - data | ||
diffs = np.abs(diffs) if use_mad else diffs**2 | ||
mad = np.sum(weight * diffs) | ||
|
||
if mad < best_mad: | ||
L = Laux.copy() | ||
best_mad = mad | ||
scale = this_scale | ||
group_min = this_min | ||
|
||
the_min = -group_min | ||
return scale, L, the_min | ||
|
||
@register_dtype("int_asym_dq") | ||
def quant_tensor_asym_dq(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_scale=1.0, scale_dtype=torch.float16, | ||
|
@@ -109,7 +176,9 @@ def quant_tensor_asym_dq(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_ | |
else: | ||
wmin = wmin_tmp | ||
wmax = wmax_tmp | ||
scale = ((wmax - wmin) / maxq).to(scale_dtype) | ||
scale = quant_tensor_k_quant_cuda(tensor) | ||
scale = scale.squeeze(-1) | ||
scale = torch.from_numpy(scale).to(tensor.dtype).cuda() | ||
scale = torch.clamp(scale, min=q_scale_thresh) | ||
scale = scale.view(-1, super_group_size) | ||
wmin_m = -wmin # pylint: disable=E1130 | ||
|
@@ -130,6 +199,86 @@ def quant_tensor_asym_dq(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_ | |
zp = round_ste(wmin_m / scale) # remove this later | ||
return qdq_result, {"scale": scale, "d_scale": d_scale}, {"wmin_m": wmin_m, "d_wmin_m": d_wmin_m} | ||
|
||
def quant_tensor_k_quant_cuda(data, num_bits=4, group_size=32): | ||
"""Quantize tensor per group based on k quant. | ||
Ref: https://github.com/ggml-org/llama.cpp/blob/64eda5deb9859e87a020e56bab5d2f9ca956f1de/ggml/src/ggml-quants.c | ||
Args: | ||
data : input weight | ||
num_bits (int, optional): num_bits. Defaults to 4. | ||
group_size (int, optional): how many elements share one scale/zp. Defaults to 4. | ||
Returns: | ||
output: quantized weight | ||
scale: scale | ||
zero_point: zero point | ||
""" | ||
try: | ||
import cupy as cp | ||
import torch | ||
|
||
if torch.cuda.is_available(): | ||
data = cp.asarray(data) | ||
data = data.reshape((-1, group_size)).astype(cp.float32) # nb = data.shape[0], (nb, group_size) | ||
maxq = 2**num_bits - 1 | ||
minq = 0 | ||
sum_x2 = cp.sum(data**2, axis=1, keepdims=True) # (nb, 1) | ||
av_x = cp.sqrt(sum_x2 / group_size) # (nb, 1) | ||
weights = cp.add(av_x, cp.abs(data)) # (nb, group_size) | ||
rmin = cp.min(data, axis=1, keepdims=True) # (nb, 1) | ||
rmax = cp.max(data, axis=1, keepdims=True) # (nb, 1) | ||
sum_w = cp.sum(weights, axis=1, keepdims=True) # (nb, 1) | ||
sum_x = cp.sum(weights * data, axis=1, keepdims=True) # (nb, group_size) | ||
iscale = cp.ones(rmax.shape, dtype=data.dtype) # (nb, 1) | ||
mask = rmin != rmax | ||
iscale[mask] = (maxq - minq) / (rmax[mask] - rmin[mask]) | ||
scale = 1 / iscale | ||
quant_data = cp.clip(cp.round(iscale * (data - rmin)), minq, maxq) # (nb, group_size) | ||
diff = scale * quant_data + rmin - data # (nb, group_size) | ||
best_mad = cp.sum(weights * diff**2, axis=1, keepdims=True) # (nb, 1) | ||
nstep = 20 | ||
rdelta = 0.1 | ||
rrmin = -1 | ||
for is_ in range(nstep): | ||
iscale_new = cp.ones(rmax.shape, dtype=data.dtype) # (nb, 1) | ||
factor = cp.array([rrmin + rdelta * is_ + maxq - minq]).astype(data.dtype)[0] | ||
mask = rmin != rmax | ||
iscale_new[mask] = factor / (rmax[mask] - rmin[mask]) | ||
quant_data_new = cp.clip(cp.round(iscale_new * (data - rmin)), minq, maxq) # (nb, group_size) | ||
mul_weights_quant_data_new = weights * quant_data_new | ||
sum_l = cp.sum(mul_weights_quant_data_new, axis=1, keepdims=True) # (nb, 1) | ||
sum_l2 = cp.sum(mul_weights_quant_data_new * quant_data_new, axis=1, keepdims=True) # (nb, 1) | ||
sum_xl = cp.sum(mul_weights_quant_data_new * data, axis=1, keepdims=True) # (nb, 1) | ||
D = cp.subtract(sum_w * sum_l2, sum_l**2) # (nb, 1) | ||
|
||
this_scale = (sum_w * sum_xl - sum_x * sum_l) / D # (nb, 1) | ||
this_min = (sum_l2 * sum_x - sum_l * sum_xl) / D # (nb, 1) | ||
|
||
diff = this_scale * quant_data_new + this_min - data # (nb, group_size) | ||
mad = cp.sum(weights * diff**2, axis=1, keepdims=True) # (nb, 1) | ||
|
||
mad_1 = cp.array(mad) | ||
best_mad_1 = cp.array(best_mad) | ||
idx_to_replace = cp.where(mad_1 < best_mad_1)[0] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. change this line to idx_to_replace = cp.where((mad_1 < best_mad_1) & (D > 0))[0] |
||
quant_data[idx_to_replace, :] = quant_data_new[idx_to_replace, :] | ||
best_mad[idx_to_replace] = mad[idx_to_replace] | ||
scale[idx_to_replace] = this_scale[idx_to_replace] | ||
rmin[idx_to_replace] = this_min[idx_to_replace] | ||
|
||
scale = scale.astype(cp.float64) | ||
|
||
return scale.get() | ||
else: | ||
logger.warning( | ||
"Try to use k-quant quantization on CUDA. However, CUDA is not available." | ||
"Fall back to k-quant quantization on CPU." | ||
) | ||
return quant_tensor_k_quant_cpu(data, num_bits, group_size) | ||
except ImportError: | ||
logger.info( | ||
"Now we are using k-quant quantization on cpu, which is time consuming." | ||
"Please consider install cupy to speed up on CUDA. See https://cupy.dev/" | ||
"Please also install torch to check CUDA availability." | ||
) | ||
return quant_tensor_k_quant_cpu(data, num_bits, group_size) | ||
|
||
@register_dtype("int_asym") | ||
def quant_tensor_asym(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_scale=1.0, scale_dtype=torch.float16, | ||
|
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
ref to inc pr