Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking
Hau Chu, Jia-Hong Lee, Yao-Chih Lee, Ching-Hsien Hsu, Jia-Da Li, Chu-Song Chen
2021 CVPR B-AMFG Workshop
The code is released for academic research use only. For commercial use, please contact Prof. Chu-Song Chen([email protected]).
-
Python 3.6+
-
Cuda 9.0
-
Cudnn 7
-
gcc 5 & g++ 5 (for Ubuntu 18.04)
$ sudo apt install gcc-5 g++-5
$ sudo ln -s /usr/bin/gcc-6 /usr/local/bin/gcc
$ sudo ln -s /usr/bin/g++-6 /usr/local/bin/g++
- Conda Env
$ conda create -n venv python=3.6
$ conda activate venv
$ conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
$ pip install tensorflow_gpu==1.9.0
$ pip install -r requirements.txt
- Git
$ sudo apt install git
Download datasets:
- Campus (http://campar.in.tum.de/Chair/MultiHumanPose)
- Shelf (http://campar.in.tum.de/Chair/MultiHumanPose)
- CMU Panoptic (https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox)
Datasets' camera_parameter.pickle (download)
The directory tree should look like below:
${ROOT}
|-- CatchImage
|-- CampusSeq1
| |-- Camera0
| |-- Camera1
| |-- Camera2
| |-- camera_parameter.pickle
| |-- actorsGT.mat
|-- Shelf
| |-- Camera0
| |-- ...
| |-- Camera4
| |-- camera_parameter.pickle
| |-- actorsGT.mat
|-- Panoptic
| |-- 160906_pizza1
| |-- 00_03 # hdImgs folder of 03 camera
| |-- 00_06 # hdImgs folder of 06 camera
| |-- ...
| |-- camera_parameter.pickle
| |-- hdPose_stage1_coco19
|-- ...
|-- src
Backend models, which is not our works, are released codes from others. We only did some small modifications to fit the format of our input/output. Put models in {ROOT}/src/backend
- YOLOv3
- HRNet
$cd src
python -W ignore testmodel.py --dataset CampusSeq1 # For Campus
python -W ignore testmodel.py --dataset Shelf # For Shelf
python -W ignore testmodel.py --dataset Panoptic # For Panoptic (sub-dataset can be modified in config)
$cd src
python -W ignore evalmodel.py --dataset CampusSeq1
python -W ignore evalmodel.py --dataset Shelf
Bone Group | Actor 0 | Actor 1 | Actor 2 | Average |
---|---|---|---|---|
Head | 100.00 | 100.00 | 100.00 | 100.00 |
Torso | 100.00 | 100.00 | 100.00 | 100.00 |
Upper arms | 98.98 | 100.00 | 100.00 | 99.66 |
Lower arms | 92.86 | 68.78 | 91.30 | 84.31 |
Upper legs | 100.00 | 100.00 | 100.00 | 100.00 |
Lower legs | 100.00 | 100.00 | 100.00 | 100.00 |
Total | 98.37 | 93.76 | 98.26 | 96.79 |
Bone Group | Actor 0 | Actor 1 | Actor 2 | Average |
---|---|---|---|---|
Head | 94.98 | 100.00 | 91.30 | 95.43 |
Torso | 100.00 | 100.00 | 100.00 | 100.00 |
Upper arms | 100.00 | 100.00 | 96.27 | 98.76 |
Lower arms | 98.21 | 77.03 | 96.27 | 90.50 |
Upper legs | 100.00 | 100.00 | 100.00 | 100.00 |
Lower legs | 100.00 | 100.00 | 100.00 | 100.00 |
Total | 99.14 | 95.41 | 97.64 | 97.39 |
@InProceedings{Chu_2021_CVPR,
author = {Chu, Hau and Lee, Jia-Hong and Lee, Yao-Chih and Hsu, Ching-Hsien and Li, Jia-Da and Chen, Chu-Song},
title = {Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2021},
pages = {1472-1481}
}