Skip to content

kaldius/Hard-Disk-Predictive-Maintenance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hard-Disk-Predictive-Maintenance

Repository of models trained for CS3244 Machine Learning term project. See project paper here.

Logistic Regression (LogisticRegression.ipynb)

  • Attributes used: 'smart_12_normalized', 'smart_189_normalized', 'smart_190_normalized', 'smart_193_normalized', 'smart_199_normalized', 'smart_240_normalized', 'smart_242_normalized', 'smart_5_normalized', 'smart_187_normalized', 'smart_188_normalized', 'smart_197_normalized', 'smart_198_normalized'
  • Randomly sampled 836 negative examples (non-failed hard disks) because we only have 836 positive examples
  • Train: 80%; Test: 20%
  • Score: 0.7014925373134329
  • Lots of false negatives

AdaBoost

  • Attributes used: all except 'date_x','serial_number','model','failure_x','date_actual_fail'
  • Used various oversample/undersample methods (SMOTE, SMOTETomek, ADASYN)
  • For AdaBoostSMOTETOMEK(biased data).ipynb, negative:positive ratio is 1:5

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published