Skip to content

Made label data optional for inference and adopted other required changes #2183

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
import keras

from keras_hub.src.api_export import keras_hub_export
from keras_hub.src.models.image_segmenter_preprocessor import (
ImageSegmenterPreprocessor,
Expand All @@ -8,25 +6,9 @@
from keras_hub.src.models.segformer.segformer_image_converter import (
SegFormerImageConverter,
)
from keras_hub.src.utils.tensor_utils import preprocessing_function

IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]


@keras_hub_export("keras_hub.models.SegFormerImageSegmenterPreprocessor")
class SegFormerImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
backbone_cls = SegFormerBackbone
image_converter_cls = SegFormerImageConverter

@preprocessing_function
def call(self, x, y=None, sample_weight=None):
if self.image_converter:
x = self.image_converter(x)
if y is not None:
y = self.image_converter(y)

x = x / 255
x = (x - IMAGENET_DEFAULT_MEAN) / IMAGENET_DEFAULT_STD

return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
38 changes: 23 additions & 15 deletions keras_hub/src/models/segformer/segformer_image_segmenter_tests.py
Original file line number Diff line number Diff line change
@@ -1,37 +1,45 @@
import numpy as np
import pytest
from keras import ops

from keras_hub.src.models.mit.mit_backbone import MiTBackbone
from keras_hub.src.models.segformer.segformer_backbone import SegFormerBackbone
from keras_hub.src.models.segformer.segformer_image_segmenter import (
SegFormerImageSegmenter,
)
from keras_hub.src.models.segformer.segformer_image_segmenter_preprocessor import ( # noqa: E501
SegFormerImageSegmenterPreprocessor,
)
from keras_hub.src.tests.test_case import TestCase


class SegFormerTest(TestCase):
def setUp(self):
image_encoder = MiTBackbone(
depths=[2, 2],
image_shape=(224, 224, 3),
layerwise_depths=[2, 2],
image_shape=(32, 32, 3),
hidden_dims=[32, 64],
num_layers=2,
blockwise_num_heads=[1, 2],
blockwise_sr_ratios=[8, 4],
layerwise_num_heads=[1, 2],
layerwise_sr_ratios=[8, 4],
max_drop_path_rate=0.1,
patch_sizes=[7, 3],
strides=[4, 2],
layerwise_patch_sizes=[7, 3],
layerwise_strides=[4, 2],
)
projection_filters = 256
self.preprocessor = SegFormerImageSegmenterPreprocessor()
self.backbone = SegFormerBackbone(
image_encoder=image_encoder, projection_filters=projection_filters
)

self.input_size = 224
self.input_data = ops.ones((2, self.input_size, self.input_size, 3))
self.input_size = 32
self.input_data = np.ones((2, self.input_size, self.input_size, 3))
self.label_data = np.ones((2, self.input_size, self.input_size, 4))

self.init_kwargs = {"backbone": self.backbone, "num_classes": 4}
self.init_kwargs = {
"backbone": self.backbone,
"num_classes": 4,
"preprocessor": self.preprocessor,
}

def test_segformer_segmenter_construction(self):
SegFormerImageSegmenter(backbone=self.backbone, num_classes=4)
Expand All @@ -42,19 +50,19 @@ def test_segformer_call(self):
backbone=self.backbone, num_classes=4
)

images = np.random.uniform(size=(2, 224, 224, 4))
images = np.random.uniform(size=(2, 32, 32, 3))
segformer_output = segformer(images)
segformer_predict = segformer.predict(images)

assert segformer_output.shape == images.shape
assert segformer_predict.shape == images.shape
self.assertAllEqual(segformer_output.shape, (2, 32, 32, 4))
self.assertAllEqual(segformer_predict.shape, (2, 32, 32, 4))

def test_task(self):
self.run_task_test(
cls=SegFormerImageSegmenter,
init_kwargs={**self.init_kwargs},
train_data=self.input_data,
expected_output_shape=(2, 224, 224),
train_data=(self.input_data, self.label_data),
expected_output_shape=(2, 32, 32, 4),
)

@pytest.mark.large
Expand Down
16 changes: 13 additions & 3 deletions tools/checkpoint_conversion/convert_segformer_checkpoints.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Usage example
# python tools/checkpoint_conversion/convert_mix_transformer.py \
# --preset "B0_ade_512"
# python tools/checkpoint_conversion/convert_segformer_checkpoints.py \
# --preset "b0_ade20k_512"

import numpy as np
from absl import app
Expand Down Expand Up @@ -94,7 +94,17 @@ def main(_):
)
num_classes = 150 if "ade20k" in FLAGS.preset else 19

preprocessor = SegFormerImageSegmenterPreprocessor()
image_converter = keras_hub.layers.SegFormerImageConverter(
height=resolution,
width=resolution,
scale=[
1.0 / (0.229 * 255.0),
1.0 / (0.224 * 255.0),
1.0 / (0.225 * 255.0),
],
offset=[-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225],
)
preprocessor = SegFormerImageSegmenterPreprocessor(image_converter)
segformer_segmenter = keras_hub.models.SegFormerImageSegmenter(
backbone=segformer_backbone,
num_classes=num_classes,
Expand Down
Loading