Sparse InversE Covariance estimation for Ecological Association and Statistical Inference
This package will be useful to anybody who wants to infer graphical models for all sorts of compositional data, though primarily intended for microbiome relative abundance data (generated from 16S amplicon sequence data). It also includes a generator for [overdispersed, zero inflated] multivariate, correlated count data. Please see the paper published in PLoS Comp Bio.
One small point on notation: we refer to the method as “SPIEC-EASI” and reserve “SpiecEasi” for this package.
- Installation
- News
- Basic Usage
- American Gut Data
- Using phyloseq
- Learning latent variable graphical models
- Cross Domain SPIEC-EASI
- pulsar & batch options
- Troubleshooting
I assume that all auxiliary packages are already installed - for example pulsar, huge, MASS, etc. If you get an unexpected error, you may need to download and install a missing dependency.
From an interactive R session:
library(devtools)
install_github("zdk123/SpiecEasi")
library(SpiecEasi)
SpiecEasi is also available via conda sources and should always be up to date with the main branch of this repo.
conda install -c bioconda r-spieceasi
Since version 1.0, installing SpiecEasi requires compiling source code, which seems to cause trouble for some Mac users due to missing a gfortran package.
It is recommended to get gfortan from xcode by running the following code in a terminal (OSX 10.10 and later):
xcode-select --install
Alternatively, the officially-supported fortran binaries are on CRAN.
The latest SpiecEasi (version 1.0.0 and higher) now uses the pulsar package for stability-based model selection. The methods are similar to previous releases, but contains some additional methods for speeding up computations
The input arguments have changed slightly (but are backwards compatible)
but the data structure that is returned from spiec.easi
has changed.
The output to spiec.easi-fit models structure can be easily processed
using new getter functions. See ?getOptInd
for usage.
You can revert to the previous release (0.1.4) to avoid code-breaking changes.
Lets simulate some multivariate data under zero-inflated negative binomial model, based on (high depth/count) round 1 of the American gut project, with a sparse network. The basic steps are
- load the data and normalize counts to to common scale (min depth)
- fit count margins to the model
- generate a synthetic network
- generate some synthetic data
- clr transformation
- inverse covariance estimation along a lambda (sparsity) path
- stability selection using the StARS criterion
- evaluate performance
Obviously, for real data, skip 1-4.
data(amgut1.filt)
depths <- rowSums(amgut1.filt)
amgut1.filt.n <- t(apply(amgut1.filt, 1, norm_to_total))
amgut1.filt.cs <- round(amgut1.filt.n * min(depths))
d <- ncol(amgut1.filt.cs)
n <- nrow(amgut1.filt.cs)
e <- d
Synthesize the data
set.seed(10010)
graph <- make_graph('cluster', d, e)
Prec <- graph2prec(graph)
Cor <- cov2cor(prec2cov(Prec))
X <- synth_comm_from_counts(amgut1.filt.cs, mar=2, distr='zinegbin', Sigma=Cor, n=n)
the main SPIEC-EASI pipeline: Data transformation, sparse inverse covariance estimation and model selection
se <- spiec.easi(X, method='mb', lambda.min.ratio=1e-2, nlambda=15)
# Applying data transformations...
# Selecting model with pulsar using stars...
# Fitting final estimate with mb...
# done
examine ROC over lambda path and PR over the stars index for the selected graph
huge::huge.roc(se$est$path, graph, verbose=FALSE)
stars.pr(getOptMerge(se), graph, verbose=FALSE)
# stars selected final network under: getRefit(se)
The above example does not cover all possible options and parameters. For example, other generative network models are available, the lambda.min.ratio (the scaling factor that determines the minimum sparsity/lambda parameter) shown here might not be right for your dataset, and its possible that you’ll want more repetitions (number of subsamples) for StARS.
Now let’s apply SpiecEasi directly to the American Gut data. Don’t
forget that the normalization is performed internally in the
spiec.easi
function. Also, we should use a larger number of stars
repetitions for real data. We can pass in arguments to the inner stars
selection function as a list via the parameter pulsar.params
. If you
have more than one processor available, you can also supply a number to
ncores
. Also, let’s compare results from the MB and glasso methods as
well as SparCC (correlation).
se.mb.amgut <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-2,
nlambda=20, pulsar.params=list(rep.num=50))
se.gl.amgut <- spiec.easi(amgut1.filt, method='glasso', lambda.min.ratio=1e-2,
nlambda=20, pulsar.params=list(rep.num=50))
sparcc.amgut <- sparcc(amgut1.filt)
## Define arbitrary threshold for SparCC correlation matrix for the graph
sparcc.graph <- abs(sparcc.amgut$Cor) >= 0.3
diag(sparcc.graph) <- 0
library(Matrix)
sparcc.graph <- Matrix(sparcc.graph, sparse=TRUE)
## Create igraph objects
ig.mb <- adj2igraph(getRefit(se.mb.amgut))
ig.gl <- adj2igraph(getRefit(se.gl.amgut))
ig.sparcc <- adj2igraph(sparcc.graph)
Visualize using igraph plotting:
library(igraph)
## set size of vertex proportional to clr-mean
vsize <- rowMeans(clr(amgut1.filt, 1))+6
am.coord <- layout.fruchterman.reingold(ig.mb)
par(mfrow=c(1,3))
plot(ig.mb, layout=am.coord, vertex.size=vsize, vertex.label=NA, main="MB")
plot(ig.gl, layout=am.coord, vertex.size=vsize, vertex.label=NA, main="glasso")
plot(ig.sparcc, layout=am.coord, vertex.size=vsize, vertex.label=NA, main="sparcc")
We can evaluate the weights on edges networks using the terms from the underlying model. SparCC correlations can be used directly, while SpiecEasi networks need to be massaged a bit. Note that since SPIEC-EASI is based on penalized estimators, the edge weights are not directly comparable to SparCC (or Pearson/Spearman correlation coefficients)
library(Matrix)
secor <- cov2cor(getOptCov(se.gl.amgut))
sebeta <- symBeta(getOptBeta(se.mb.amgut), mode='maxabs')
elist.gl <- summary(triu(secor*getRefit(se.gl.amgut), k=1))
elist.mb <- summary(sebeta)
elist.sparcc <- summary(sparcc.graph*sparcc.amgut$Cor)
hist(elist.sparcc[,3], main='', xlab='edge weights')
hist(elist.mb[,3], add=TRUE, col='forestgreen')
hist(elist.gl[,3], add=TRUE, col='red')
Lets look at the degree statistics from the networks inferred by each method.
dd.gl <- degree.distribution(ig.gl)
dd.mb <- degree.distribution(ig.mb)
dd.sparcc <- degree.distribution(ig.sparcc)
plot(0:(length(dd.sparcc)-1), dd.sparcc, ylim=c(0,.35), type='b',
ylab="Frequency", xlab="Degree", main="Degree Distributions")
points(0:(length(dd.gl)-1), dd.gl, col="red" , type='b')
points(0:(length(dd.mb)-1), dd.mb, col="forestgreen", type='b')
legend("topright", c("MB", "glasso", "sparcc"),
col=c("forestgreen", "red", "black"), pch=1, lty=1)
SpiecEasi includes some convience wrappers to work directly with
phyloseq
objects.
library(phyloseq)
## Load round 2 of American gut project
data('amgut2.filt.phy')
se.mb.amgut2 <- spiec.easi(amgut2.filt.phy, method='mb', lambda.min.ratio=1e-2,
nlambda=20, pulsar.params=list(rep.num=50))
ig2.mb <- adj2igraph(getRefit(se.mb.amgut2), vertex.attr=list(name=taxa_names(amgut2.filt.phy)))
plot_network(ig2.mb, amgut2.filt.phy, type='taxa', color="Rank3")
It can be shown that unobserved, latent variables introduce artifacts into empirical estimates of OTU-OTU associations. These effects can be removed from the network by treating the inverse covariance selection problem as a sparse + low-rank decomposition (SPIEC-EASI slr), where the sparse component are the associations encoded as a conditional independence graph, and the low-rank components are the isolated latent effects.
Please see the preprint and the manuscript Synapse project or github repository for more details.
To demonstrate this in action we can show that removing latent effects improves a consistency measure between round 1 and round 2 of the American Gut project data.
First we fit the networks, assuming that there are 10 latent components in the dataset:
se1.mb.amgut <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-2,
nlambda=20, pulsar.params=list(rep.num=20, ncores=4))
se2.mb.amgut <- spiec.easi(amgut2.filt.phy, method='mb', lambda.min.ratio=1e-2,
nlambda=20, pulsar.params=list(rep.num=20, ncores=4))
se1.slr.amgut <- spiec.easi(amgut1.filt, method='slr', r=10, lambda.min.ratio=1e-2,
nlambda=20, pulsar.params=list(rep.num=20, ncores=4))
se2.slr.amgut <- spiec.easi(amgut2.filt.phy, method='slr', r=10, lambda.min.ratio=1e-2,
nlambda=20, pulsar.params=list(rep.num=20, ncores=4))
Then we compare the consistency between the edge sets within each method using the Jaccard index.
otu1 <- colnames(amgut1.filt)
otu2 <- taxa_names(amgut2.filt.phy)
edge.diss(getRefit(se1.mb.amgut), getRefit(se2.mb.amgut), 'jaccard', otu1, otu2)
edge.diss(getRefit(se1.slr.amgut), getRefit(se2.slr.amgut), 'jaccard', otu1, otu2)
Consistency should be a bit better for the slr networks.
Construct the robust PCA from amgut2 data
X <- se2.slr.amgut$est$data
L <- se2.slr.amgut$est$resid[[getOptInd(se2.slr.amgut)]]
pca <- robustPCA(X, L)
We can also check the correlation between AGP meta-data and the latent factors (scores of the robust PCA).
age <- as.numeric(as.character(sample_data(amgut2.filt.phy)$AGE))
bmi <- as.numeric(as.character(sample_data(amgut2.filt.phy)$BMI))
depth <- colSums(otu_table(amgut2.filt.phy))
cor(age, pca$scores, use='pairwise')
cor(bmi, pca$scores, use='pairwise')
cor(depth, pca$scores, use='pairwise')
SpiecEasi now includes a convenience wrapper for dealing with multiple taxa sequenced on the same samples, such as 16S and ITS, as seen in Tipton, Müller, et. al. (2018). It assumes that each taxa is in it’s own data matrix and that all samples are in all data matrices in the same order.
Here’s an example run from the HMP2 project with 16S and Proteomics data.
library(phyloseq)
data(hmp2)
se.hmp2 <- spiec.easi(list(hmp216S, hmp2prot), method='mb', nlambda=40,
lambda.min.ratio=1e-2, pulsar.params = list(thresh = 0.05))
dtype <- c(rep(1,ntaxa(hmp216S)), rep(2,ntaxa(hmp2prot)))
plot(adj2igraph(getRefit(se.hmp2)), vertex.color=dtype+1, vertex.size=9)
SpiecEasi is now using the pulsar
package as the backend for
performing model selection. In the default parameter setting, this uses
the same StARS procedure as previous
versions. As in the previous version of SpiecEasi, we can supply the
ncores
argument to the pulsar.params list to break up the subsampled
computations into parallel tasks. In this example, we set the random
seed to make consistent comparison across experiments.
## Default settings ##
pargs1 <- list(rep.num=50, seed=10010)
t1 <- system.time(
se1 <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-3, nlambda=30,
sel.criterion='stars', pulsar.select=TRUE, pulsar.params=pargs1)
)
## Parallel multicore ##
pargs2 <- list(rep.num=50, seed=10010, ncores=4)
t2 <- system.time(
se2 <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-3, nlambda=30,
sel.criterion='stars', pulsar.select=TRUE, pulsar.params=pargs2)
)
We can further speed up StARS using the bounded-StARS (‘bstars’) method. The B-StARS approach computes network stability across the whole lambda path, but only for the first 2 subsamples. This is used to build an initial estimate of the summary statistic, which in turn gives us a lower/upper bound on the optimal lambda. The remaining subsamples are used to compute the stability over the restricted path. Since denser networks are more computational expensive to compute, this can significantly reduce computational time for datasets with many variables.
t3 <- system.time(
se3 <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-3, nlambda=30,
sel.criterion='bstars', pulsar.select=TRUE, pulsar.params=pargs1)
)
t4 <- system.time(
se4 <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-3, nlambda=30,
sel.criterion='bstars', pulsar.select=TRUE, pulsar.params=pargs2)
)
We can see that in addition to the computational savings, the refit networks are identical.
## serial vs parallel
identical(getRefit(se1), getRefit(se2))
t1[3] > t2[3]
## stars vs bstars
identical(getRefit(se1), getRefit(se3))
t1[3] > t3[3]
identical(getRefit(se2), getRefit(se4))
t2[3] > t4[3]
Pulsar gives us the option of running stability selection in batch mode, using the batchtools package. This will be useful to anyone with access to an hpc/distributing computing system. Each subsample will be independently executed using a system-specific cluster function.
This requires an external config file which will instruct the batchtools
registry how to construct the cluster function which will execute the
individual jobs. batch.pulsar
has some built in config files that are
useful for testing purposes (serial mode, “parallel”, “snow”, etc), but
it is advisable to create your own config file and pass in the absolute
path. See the batchtools
docs
for instructions on how to construct config file and template files
(i.e. to interact with a queueing system such as TORQUE or SGE).
## bargs <- list(rep.num=50, seed=10010, conffile="path/to/conf.txt")
bargs <- list(rep.num=50, seed=10010, conffile="parallel")
## See the config file stores:
pulsar::findConfFile('parallel')
## uncomment line below to turn off batchtools reporting
# options(batchtools.verbose=FALSE)
se5 <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-3, nlambda=30,
sel.criterion='stars', pulsar.select='batch', pulsar.params=bargs)
A common issue that comes up with when running spiec.easi
is coming up
with an empty network after running StARS.
For example:
pargs <- list(seed=10010)
se <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=5e-1, nlambda=10, pulsar.params=pargs)
# Warning in pulsar(data = X, fun = match.fun(estFun), fargs = args, seed =
# 10010, : Optimal lambda may be smaller than the supplied values
getOptInd(se)
# [1] 1
sum(getRefit(se))/2
# [1] 0
As the warning indicates, the network stability could not be determined
from the lambda path. Looking at the stability along the lambda path,
se$select$stars$summary
, we can see that the maximum value of the
StARS summary statistic never crosses the default threshold (0.05).
This problem we can fix by lowering lambda.min.ratio
to explore denser
networks.
se <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-1, nlambda=10, pulsar.params=pargs)
We have now fit a network, but since we have only a rough, discrete sampling of networks along the lambda path, we should check how far we are from the target stability threshold (0.05).
getStability(se)
# [1] 0.034032
sum(getRefit(se))/2
# [1] 158
To get closer to the mark, we should bump up nlambda
to more finely
sample of the lambda path, which gives a denser network.
se <- spiec.easi(amgut1.filt, method='mb', lambda.min.ratio=1e-1, nlambda=100, pulsar.params=pargs)
getStability(se)
# [1] 0.04946882
sum(getRefit(se))/2
# [1] 210