Skip to content

Commit

Permalink
Fix faults
Browse files Browse the repository at this point in the history
Thanks Giannis!
  • Loading branch information
kongr45gpen committed Jun 17, 2017
1 parent 4b18e4b commit b6eb74e
Show file tree
Hide file tree
Showing 2 changed files with 13 additions and 13 deletions.
Binary file modified log2.pdf
Binary file not shown.
26 changes: 13 additions & 13 deletions log2.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\documentclass[11pt,a4paper,titlepage,draft]{article}
\documentclass[11pt,a4paper,titlepage]{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
Expand Down Expand Up @@ -5667,18 +5667,18 @@ \subsection{Ασκήσεις}
\end{align*}
\paragraph{}
\begin{align*}
\begin{gather*}
\lim_{(x,y)\to (0,0)}
\left[
\frac{(2+y^3)\tan (x^3+y^3)}{x^3+y^3} +
\frac{\tan(x^5y^5)}{\tan(x^5)\tan(y^5)}
\right]
&= \\
&=
=\\
=
\lim_{(x,y)\to (0,0)} (2+y^3) \cdot
\lim_{(x,y)\to (0,0)} \frac{\tan(x^3+y^3)}{x^3+y^3} +
\lim_{(x,y)\to (0,0)} \frac{\tan(x^5+y^5)}{\tan(x^5) \tan(y^5)}
\end{align*}
\lim_{(x,y)\to (0,0)} \frac{\tan(x^5y^5)}{\tan(x^5) \tan(y^5)}
\end{gather*}
Αν θέσω \(x^3+y^3=u\), έχω:
\[
Expand All @@ -5689,9 +5689,9 @@ \subsection{Ασκήσεις}
\]
\[
\lim_{(x,y)\to (0,0)} \frac{\tan(x^5+y^5)}{\tan(x^5) \tan(y^5)}
\lim_{(x,y)\to (0,0)} \frac{\tan(x^5y^5)}{\tan(x^5) \tan(y^5)}
=
\lim_{(x,y)\to (0,0)} \frac{\frac{\tan(x^5+y^5)}{x^5y^5}}{\frac{\tan(x^5)}{x^5}\cdot\frac{\tan(y^5)}{y^5}}
\lim_{(x,y)\to (0,0)} \frac{\frac{\tan(x^5y^5)}{x^5y^5}}{\frac{\tan(x^5)}{x^5}\cdot\frac{\tan(y^5)}{y^5}}
=
\frac{
\lim_{v\to 0} \frac{\tan v}{v}
Expand Down Expand Up @@ -6533,16 +6533,16 @@ \subsubsection{Κριτήριο ύπαρξης ολικού διαφορικού
\paragraph{}
%TODO Zaharis Graph 02
\begin{align*}
f(A)-f(A_0)=
\int_{A_0}^A \vec F \dif r \implies \\ f(A)=f(A_0)+\int_{A_0}^B (\cancel{P\dif x+Q\dif y} + R\dif z) +
f(A)-f(A_0)&=
\int_{A_0}^A \vec F \dif r \implies \\ f(A)&=f(A_0)+\int_{A_0}^B (\cancel{P\dif x+Q\dif y} + R\dif z) +
\int_B^\Gamma (\cancel{P\dif x}+Q\dif y +\cancel{P\dif z}) + \int_\Gamma^A (P\dif x + \cancel{Q\dif y+R\dif z})
\implies \\
f(A)=f(A_0)+\int_{z_0}^z R(x_0,y_0,t)\dif t + \int_{y_0}^y Q(x_0,t,z)\dif t +\int_{x_0}^x P(t,y,z)\dif t
f(A)&=f(A_0)+\int_{z_0}^z R(x_0,y_0,t)\dif t + \int_{y_0}^y Q(x_0,t,z)\dif t +\int_{x_0}^x P(t,y,z)\dif t
\end{align*}
\paragraph{Άσκηση}
\[
\underbrace{(3x^2+6xy^2)}_{P(x,y)=f_x}\dif x + \underbrace{(6x^2+4y^3)}_{Q(x,y)=f_y}\dif y
\underbrace{(3x^2+6xy^2)}_{P(x,y)=f_x}\dif x + \underbrace{(6x^2y+4y^3)}_{Q(x,y)=f_y}\dif y
\]
Να δειχθεί ότι η έκφραση αυτή αποτελεί ολικό διαφορικό μιας συνάρτησης \(f(x,y)\), και να βρεθεί η μορφή της συναρτησης αυτής.
\begin{align*}
Expand Down Expand Up @@ -7560,7 +7560,7 @@ \subsection{Διερεύνηση περίπτωσης συνάρτησης 2 μ
\end{enumerate}
\paragraph{Άσκηση}
Να βρεθούν τα στάσιμα σημεία της συνάρτησης \( f(x,y) = x^2+y^2-3xy \)
Να βρεθούν τα στάσιμα σημεία της συνάρτησης \( f(x,y) = x^3+y^3-3xy \)
\[
\nabla f = 0 \implies
\begin{cases}
Expand Down

0 comments on commit b6eb74e

Please sign in to comment.