Skip to content

kwjinwoo/HRNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HRNet Implementation

Introduction

  • This repository is HRNet Implementation code with Tensorflow
  • Implemented Simple Semantic Segmentation task

requirement

python == 3.8
tensorflow == 2.8.0
matplotlib == 3.5.2

dataset

  • Semantic Segmentation
    using OXFORD PET Dataset
python ./segmentation/dataset/dataset_make.py --img_dir --label_dir --train_txt --val_txt --shuffle --save_dir
  
args
--img_dr : jpg images directory path
--label_dir : png labels directory path
--train_txt : train.txt file path
--val_txt : val.txt file path
--shuffle : data shuffle
--save_dir : the directory path saved tfrecord files

then tfrecord files generated

$segmentation/
├── tfrecords
|   ├── train_OXFORD.tfrecord
|   └── val_OXFORD.tfrecord

train

  • Semantic Segmentation
python segmentation_train.py --width --height --num_class --c --batch_size --num_epoch --initial_lr --weight_decay   

args
width : input image width
height : input image height
num_class : the number of class
c : the high resolution feature map channels
batch_size : dataset batch size
num_epoch : the number of epoch
initial_lr : initial learning rate
weight_decay : weight decay ratio

result

reference

[1] Deep High-Resolution Representation Learning for Visual Recognition. Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, Bin Xiao. Accepted by TPAMI.

Releases

No releases published

Packages

No packages published

Languages