DBP is a Python library for adaptive factor analysis of scRNA-seq data.
Rscript preprocess/pbmc.R
Rscript preprocess/combine_subsets.R --task pbmc && py preprocess/split_mat.py --task pbmc
CUDA_VISIBLE_DEVICES=0 py run.py --exp e0 --task pbmc
task=pbmc
init=sp_00001899
K=50
Rscript comparison/liger.r --exp e0 --init_model $init --K $K --task $task
task=pbmc
init=sp_00001899
K=38
py eval/benchmark_batch_bio_break.py --task $task --init_model $init --K $K --method DBP
task=pbmc
init=sp_00001899
K=50
py eval/benchmark_batch_bio.py --task $task --init_model $init --K $K --method liger
File or directory | Description |
---|---|
simulated datasets/ |
Script for generating simulated data sets |
analysis/ |
Scripts for downstream analysis |
comparison/ |
Scripts for algorithm comparison and qualitative evaluation |
configs/ |
Dataset configuration and DBP model configuration |
eval/ |
Scripts for quantitative evaluation |
functions/ |
PyTorch functions for DBP |
modules/ |
PyTorch models and dataloader for DBP |
preprocess/ |
Scripts for data preprocessing |
utils/ |
Commonly used functions |
README.md |
This file |
run.py |
Script for DBP training and inference |