Skip to content

Commit

Permalink
update documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
alpha-beta-soup committed Sep 11, 2024
1 parent fb377d2 commit e18a6fe
Showing 1 changed file with 50 additions and 27 deletions.
77 changes: 50 additions & 27 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,49 +7,72 @@ Code written to generate DGGS benchmark cases, and measure their performance aga
Written to support: Law & Ardo (2024) "Using a discrete global grid system for a scalable, interoperable, and reproductible system of land-use classification" (In preparation.)

## Computer specifications

Processor: 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz 2.50 GHz
Installed RAM: 32.0 GB (31.7 GB usable)
System type: 64-bit operating system, x64-based processor

## To run benchmarks
## Executing benchmarks

Two Jupyter notebooks are available to generate and run benchmarking:

1. [Vector benchmarks](vector_benchmark.ipynb)
2. [Raster benchmarks](raster_benchmark.ipynb)

Two ([vector_benchmark](vector_benchmark.ipynb) and [raster_benchmark](raster_benchmark.ipynb)) jupyter notebooks are available to generate and run benchmarking.
Benchmarking Notebooks are self documented, and they follow the same workflow as outlined in the paper:

Benchmarking notebooks are self explanatory, they follow the same workflow as outlined in the paper:
1. Generation of Benchmark Data
2. (Indexing)
3. Joining
4. Classification

Generation of Benchmark Data -> (Indexing) -> Joining -> Classification
Local functions are defined within Jupyter Notebooks; for vector benchmarks these can be found here

#### Local functions are defined within python codes for Vector benchmarking can be found:
[Vector functions](Vector_benchmarking/Vector_funcs.py)
- [Vector functions](Vector_benchmarking/Vector_funcs.py)
- [DGGS functions](Vector_benchmarking/DGGS_funcs.py)

[DGGS functions](Vector_benchmarking/DGGS_funcs.py)
## Recorded benchmarking results


## Paper benchmarks results
### Vector
For vector experiments, each run and results of benchmarking are found in independent Jupyter notebooks, organised by number of inputs:

Data and benchmark results for the paper can be found within this repository.

#### Each run and results of benchmarking for Vector & DGGS can be found in independent jupyter notebooks within the folder:
#### Vector (DGGS)

Vector_benchmarking/DGGS/dggs_join_classify_benchmark_
[2](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_2.ipynb)
[5](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_5.ipynb)
[10](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_10.ipynb)
[50](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_50.ipynb)
[100](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_100.ipynb)
[500](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_500.ipynb)
[1000.ipynb](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_1000.ipynb)
- [2](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_2.ipynb)
- [5](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_5.ipynb)
- [10](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_10.ipynb)
- [50](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_50.ipynb)
- [100](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_100.ipynb)
- [500](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_500.ipynb)
- [1000](Vector_benchmarking/DGGS/dggs_join_classify_benchmark_1000.ipynb)

Vector_benchmarking/Traditional/vector_join_classify_benchmark_
[2](Vector_benchmarking/Traditional/vector_join_classify_benchmark_2.ipynb)
[5](Vector_benchmarking/Traditional/vector_join_classify_benchmark_5.ipynb)
[10](Vector_benchmarking/Traditional/vector_join_classify_benchmark_10.ipynb)
[50](Vector_benchmarking/Traditional/vector__join_classify_benchmark_50.ipynb)
[100](Vector_benchmarking/Traditional/vector_join_classify_benchmark_100.ipynb)
[250.ipynb](Vector_benchmarking/Traditional/vector_join_classify_benchmark_250.ipynb)
#### Vector (baseline)

#### Data for Vector & DGGS:
- [2](Vector_benchmarking/Traditional/vector_join_classify_benchmark_2.ipynb)
- [5](Vector_benchmarking/Traditional/vector_join_classify_benchmark_5.ipynb)
- [10](Vector_benchmarking/Traditional/vector_join_classify_benchmark_10.ipynb)
- [50](Vector_benchmarking/Traditional/vector__join_classify_benchmark_50.ipynb)
- [100](Vector_benchmarking/Traditional/vector_join_classify_benchmark_100.ipynb)
- [250](Vector_benchmarking/Traditional/vector_join_classify_benchmark_250.ipynb)

##### Data for Vector & DGGS:

[Vector Data](Vector_benchmarking/Traditional/vector_1000)

[DGGS Data](Vector_benchmarking/DGGS/vector_1000)
[DGGS Data](Vector_benchmarking/DGGS/vector_1000)

### Raster

For raster experiments, data is contained within singular notebooks. The results for different numbers of inputs are in different cells.

#### Raster (DGGS)

- [Indexing](Raster_benchmarking/DGGS/Indexing.ipynb)
- [Joining and classifying](Raster_benchmarking/DGGS/join_classify.ipynb)

#### Raster (baseline)

- [Joining](Raster_benchmarking/Raster/stacking_join.ipynb)
- [Classifying](Raster_benchmarking/Raster/raster_classification.ipynb)

0 comments on commit e18a6fe

Please sign in to comment.