Skip to content

Código do artigo "Análise de Tráfego de Rede com Machine Learning para Identificação de Ameaças a Dispositivos IoT".

License

Notifications You must be signed in to change notification settings

marcelovca90/Anomaly-Detection-IoT23

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Study and Evaluation of Classifiers for Detecting Threats to IoT Devices based on Network Traffic

Sebastian Garcia, Agustin Parmisano, & Maria Jose Erquiaga. (2020). IoT-23: A labeled dataset with malicious and benign IoT network traffic (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4743746

Setup

  1. If you plan to use TensorFlow with GPU, follow these steps.
  2. conda create -n "tf" python=3.9
  3. conda activate tf
  4. pip install numpy pandas tensorflow autokeras matplotlib pydot pydotplus graphviz plotly optuna scikit-learn-intelex xgboost hpsklearn hyperopt catboost lightgbm imblearn pytorch_tabnet scikit-elcs

Note: for process-based parallelization, the package mysqlclient must be installed too.

About

Código do artigo "Análise de Tráfego de Rede com Machine Learning para Identificação de Ameaças a Dispositivos IoT".

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%