Important
This repository has been merged into the Memgraph AI Toolkit monorepo to avoid duplicating tools.
It will be deleted in one month—please follow the Langchain integration there for all future development, and feel free to open issues or PRs in that repo.
This package contains the LangChain integration with Memgraph graph database.
pip install -U langchain-memgraph
The Memgraph
class is a wrapper around the database client that supports the
query operation.
import os
from langchain_memgraph.graphs.memgraph import Memgraph
url = os.getenv("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USERNAME", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
graph = Memgraph(url=url, username=username, password=password, refresh_schema=False)
results = graph.query("MATCH (n) RETURN n LIMIT 1")
print(results)
The MemgraphQAChain
class enables natural language interactions with a Memgraph database.
It uses an LLM and the database's schema to translate a user's question into a Cypher query, which is executed against the database.
The resulting data is then sent along with the user's question to the LLM to generate a natural language response.
import os
from langchain_memgraph.graphs.memgraph import Memgraph
from langchain_memgraph.chains.graph_qa import MemgraphQAChain
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USERNAME", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
graph = Memgraph(url=url, username=username, password=password, refresh_schema=False)
chain = MemgraphQAChain.from_llm(
ChatOpenAI(temperature=0),
graph=graph,
model_name="gpt-4-turbo",
allow_dangerous_requests=True,
)
response = chain.invoke("Is there a any Person node in the dataset?")
result = response["result"].lower()
print(result)
The MemgraphToolkit
contains different tools agents can leverage to perform specific tasks the user has given them. Toolkit
needs a database object and LLM access since different tools leverage different operations.
Currently supported tools:
- QueryMemgraphTool - Basic Cypher query execution tool
import os
import pytest
from dotenv import load_dotenv
from langchain.chat_models import init_chat_model
from langchain_memgraph import MemgraphToolkit
from langchain_memgraph.graphs.memgraph import Memgraph
from langgraph.prebuilt import create_react_agent
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USERNAME", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
db = Memgraph(url=url, username=username, password=password)
toolkit = MemgraphToolkit(db=db, llm=llm)
agent_executor = create_react_agent(
llm, toolkit.get_tools(), prompt="You will get a cypher query, try to execute it on the Memgraph database."
)
example_query = "MATCH (n) WHERE n.name = 'Jon Snow' RETURN n"
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
last_event = None
for event in events:
last_event = event
event["messages"][-1].pretty_print()
print(last_event)
Install the test dependencies to run the tests:
- Install dependencies
poetry install --with test,test_integration
-
Start Memgraph in the background.
-
Create an
.env
file that points to Memgraph and OpenAI API
MEMGRAPH_URI=bolt://localhost:7687
MEMGRAPH_USERNAME=
MEMGRAPH_PASSWORD=
OPENAI_API_KEY=your_openai_api_key
Run the unit tests using:
make tests
Run the integration test using:
make integration_tests
Install the codespell
, lint
, and typing dependencies to lint and format your code:
poetry install --with codespell,lint,typing
To format your code, run:
make format
To lint it, run:
make lint