This advanced Retrieval-Augmented Generation (RAG) system is a sophisticated document processing and question-answering platform that leverages state-of-the-art natural language processing techniques. The system combines intelligent document extraction, semantic embedding, vector search, and generative AI to provide accurate and contextual responses to user queries.
Check out the live demo of the RAG Document QA System: https://navidchatbot.streamlit.app/
flowchart TD
User(["User"]) <--> UI["Web Interface\n(Streamlit)"]
API(["External Systems"]) <--> APIServer["API Server\n(FastAPI)"]
subgraph Core["RAG System Core"]
direction TB
RAGEngine["RAG Engine"] <--> DocProcessor["Document Processor"]
RAGEngine <--> VectorDB["Vector Database"]
RAGEngine <--> LLM["Language Models"]
RAGEngine <--> KG["Knowledge Graph"]
end
UI <--> Core
APIServer <--> Core
Documents[("Document\nCollection")] --> DocProcessor
class RAGEngine,KG primary
class User,API,Documents secondary
The system employs a modular architecture combining vector search with knowledge graph capabilities:
- Document Processor intelligently extracts, chunks, and prepares documents for embedding
- Vector Database provides efficient similarity search using state-of-the-art indexing
- Knowledge Graph captures semantic relationships between document entities
- RAG Engine orchestrates the retrieval and generation process
- Language Models generate contextual responses based on retrieved information
The system is accessible through both a Streamlit web interface for direct user interaction and a FastAPI server for programmatic integration with other applications.
- Multi-format document support (PDF, DOCX, TXT, CSV, JSON)
- Adaptive text chunking strategies
- Metadata extraction
- Configurable chunk sizes
- Supports multiple embedding models
- Sentence Transformers integration
- HuggingFace Transformers compatibility
- GPU and CPU support
- Vector database with multiple backends (FAISS, Keyword)
- Hybrid search modes (semantic, keyword, hybrid)
- Metadata-based filtering
- Efficient similarity search
- Implicit knowledge graph creation through semantic embeddings
- Relationship mapping between document chunks
- Context-aware document retrieval
- Enhanced reasoning capabilities
- Multiple LLM backends (OpenAI, HuggingFace, Local)
- Chain-of-Thought reasoning
- Customizable prompt templates
- Contextual response generation
- Python 3.8+
- PyTorch
- Sentence Transformers
- Vector Database Libraries
# Clone the repository
git clone https://github.com/yourusername/document-embedding-system.git
# Create virtual environment
python -m venv venv
source venv/bin/activate
# Install dependencies
pip install -r requirements.txt
- Document Processor: Intelligent text extraction and chunking
- Embedding Model: Convert text to semantic vectors
- Vector Database: Efficient document storage and retrieval
- RAG Engine: Combine retrieval and generation
- LLM Integration: Multiple language model backends
- Knowledge Graph: Enhance retrieval with entity relationships
# Initialize components
from document.processor import DocumentProcessor
from embedding.model import create_embedding_model
from rag.engine import create_rag_engine
# Process documents
processor = DocumentProcessor()
chunks, metadata = processor.process_file('path/to/document.pdf')
# Create RAG engine
rag_engine = create_rag_engine()
# Add documents
rag_engine.add_documents(chunks, metadata)
# Query documents
response = rag_engine.generate_response("What are the key points?")
print(response)
The system creates an implicit knowledge graph through:
- Semantic embeddings that capture document relationships
- Context-aware document retrieval
- Ability to map connections between document chunks
- Reasoning that considers multiple document contexts
- Add more document type support
- Implement advanced semantic search
- Create REST API interface
- Add machine learning model fine-tuning
- Enhance knowledge graph visualization
- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
- Streamlit Web App
- FastAPI Backend
- CLI Tools
- Python Library
- Robust error management
- Comprehensive logging
- Graceful failure mechanisms
MIT License
Navid Mirnouri - [email protected]
- Live Demo: https://navidchatbot.streamlit.app/
- Repository: GitHub Project
Note: Ensure you have appropriate computational resources for processing large document collections.