Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement gaussian splatting ply file saving with o3d #427

Merged
merged 9 commits into from
Jan 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions examples/simple_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@
from gsplat.rendering import rasterization
from gsplat.strategy import DefaultStrategy, MCMCStrategy
from gsplat.optimizers import SelectiveAdam
from gsplat.utils import save_ply


@dataclass
Expand Down Expand Up @@ -85,6 +86,10 @@ class Config:
eval_steps: List[int] = field(default_factory=lambda: [7_000, 30_000])
# Steps to save the model
save_steps: List[int] = field(default_factory=lambda: [7_000, 30_000])
# Whether to save ply file (storage size can be large)
save_ply: bool = False
# Steps to save the model as ply
ply_steps: List[int] = field(default_factory=lambda: [7_000, 30_000])

# Initialization strategy
init_type: str = "sfm"
Expand Down Expand Up @@ -167,6 +172,7 @@ class Config:
def adjust_steps(self, factor: float):
self.eval_steps = [int(i * factor) for i in self.eval_steps]
self.save_steps = [int(i * factor) for i in self.save_steps]
self.ply_steps = [int(i * factor) for i in self.ply_steps]
self.max_steps = int(self.max_steps * factor)
self.sh_degree_interval = int(self.sh_degree_interval * factor)

Expand Down Expand Up @@ -294,6 +300,8 @@ def __init__(
os.makedirs(self.stats_dir, exist_ok=True)
self.render_dir = f"{cfg.result_dir}/renders"
os.makedirs(self.render_dir, exist_ok=True)
self.ply_dir = f"{cfg.result_dir}/ply"
os.makedirs(self.ply_dir, exist_ok=True)

# Tensorboard
self.writer = SummaryWriter(log_dir=f"{cfg.result_dir}/tb")
Expand Down Expand Up @@ -735,6 +743,24 @@ def train(self):
torch.save(
data, f"{self.ckpt_dir}/ckpt_{step}_rank{self.world_rank}.pt"
)
if (
step in [i - 1 for i in cfg.ply_steps]
or step == max_steps - 1
and cfg.save_ply
):
rgb = None
if self.cfg.app_opt:
# eval at origin to bake the appeareance into the colors
rgb = self.app_module(
features=self.splats["features"],
embed_ids=None,
dirs=torch.zeros_like(self.splats["means"][None, :, :]),
sh_degree=sh_degree_to_use,
)
rgb = rgb + self.splats["colors"]
rgb = torch.sigmoid(rgb).squeeze(0)

save_ply(self.splats, f"{self.ply_dir}/point_cloud_{step}.ply", rgb)

# Turn Gradients into Sparse Tensor before running optimizer
if cfg.sparse_grad:
Expand Down
93 changes: 93 additions & 0 deletions gsplat/utils.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,101 @@
import math
import struct

import torch
import torch.nn.functional as F
from torch import Tensor
import numpy as np


def save_ply(splats: torch.nn.ParameterDict, dir: str, colors: torch.Tensor = None):
# Convert all tensors to numpy arrays in one go
print(f"Saving ply to {dir}")
numpy_data = {k: v.detach().cpu().numpy() for k, v in splats.items()}

means = numpy_data["means"]
scales = numpy_data["scales"]
quats = numpy_data["quats"]
opacities = numpy_data["opacities"]

sh0 = numpy_data["sh0"].transpose(0, 2, 1).reshape(means.shape[0], -1)
shN = numpy_data["shN"].transpose(0, 2, 1).reshape(means.shape[0], -1)

# Create a mask to identify rows with NaN or Inf in any of the numpy_data arrays
invalid_mask = (
np.isnan(means).any(axis=1)
| np.isinf(means).any(axis=1)
| np.isnan(scales).any(axis=1)
| np.isinf(scales).any(axis=1)
| np.isnan(quats).any(axis=1)
| np.isinf(quats).any(axis=1)
| np.isnan(opacities).any(axis=0)
| np.isinf(opacities).any(axis=0)
| np.isnan(sh0).any(axis=1)
| np.isinf(sh0).any(axis=1)
| np.isnan(shN).any(axis=1)
| np.isinf(shN).any(axis=1)
)

# Filter out rows with NaNs or Infs from all data arrays
means = means[~invalid_mask]
scales = scales[~invalid_mask]
quats = quats[~invalid_mask]
opacities = opacities[~invalid_mask]
sh0 = sh0[~invalid_mask]
shN = shN[~invalid_mask]

num_points = means.shape[0]

with open(dir, "wb") as f:
# Write PLY header
f.write(b"ply\n")
f.write(b"format binary_little_endian 1.0\n")
f.write(f"element vertex {num_points}\n".encode())
f.write(b"property float x\n")
f.write(b"property float y\n")
f.write(b"property float z\n")
f.write(b"property float nx\n")
f.write(b"property float ny\n")
f.write(b"property float nz\n")

if colors is not None:
for j in range(colors.shape[1]):
f.write(f"property float f_dc_{j}\n".encode())
else:
for i, data in enumerate([sh0, shN]):
prefix = "f_dc" if i == 0 else "f_rest"
for j in range(data.shape[1]):
f.write(f"property float {prefix}_{j}\n".encode())

f.write(b"property float opacity\n")

for i in range(scales.shape[1]):
f.write(f"property float scale_{i}\n".encode())
for i in range(quats.shape[1]):
f.write(f"property float rot_{i}\n".encode())

f.write(b"end_header\n")

# Write vertex data
for i in range(num_points):
f.write(struct.pack("<fff", *means[i])) # x, y, z
f.write(struct.pack("<fff", 0, 0, 0)) # nx, ny, nz (zeros)

if colors is not None:
color = colors.detach().cpu().numpy()
for j in range(color.shape[1]):
f_dc = (color[i, j] - 0.5) / 0.2820947917738781
f.write(struct.pack("<f", f_dc))
else:
for data in [sh0, shN]:
for j in range(data.shape[1]):
f.write(struct.pack("<f", data[i, j]))

f.write(struct.pack("<f", opacities[i])) # opacity

for data in [scales, quats]:
for j in range(data.shape[1]):
f.write(struct.pack("<f", data[i, j]))


def normalized_quat_to_rotmat(quat: Tensor) -> Tensor:
Expand Down
Loading