Skip to content

AgriTech is an AI-powered web platform that offers crop recommendations, yield prediction, disease detection, and collaborative tools to empower farmers and promote smart, sustainable agriculture.

Notifications You must be signed in to change notification settings

omroy07/AgriTech

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

๐ŸŒฑ AgriTech: Smart Farming Solutions

SWoC 2026 License: MIT PRs Welcome

AgriTech is an innovative AI-powered platform designed to empower farmers and agricultural communities with real-time insights, disease detection, and interactive collaboration tools to ensure a sustainable future.


๐Ÿš€ Quick Start (TL;DR)

  1. Clone: git clone https://github.com/omroy07/AgriTech.git
  2. Backend: pip install -r requirements.txt && python src/backend/app.py
  3. Frontend: Open http://localhost:8000 after running a local server in src/frontend/.
  4. Goal: Get accurate soil analysis and plant health reports instantly.

๐ŸŽฏ Quick Preview

Dashboard Overview

AgriTech Dashboard

๐Ÿ“ธ Key Features in Action

Crop Recommendation Disease Detection Community Chat
Crop Recommendation Disease Detection Community Chat

๐Ÿ— System Architecture & Flow

  1. User Input: Farmers upload soil data or plant images via the Dashboard.
  2. Processing: The Flask backend routes data to specific AI/ML models.
  3. ML Inference:
    • CNN Models: Detect plant diseases from images.
    • Random Forest/XGBoost: Suggest crops based on soil NPK levels.
  4. Output: Results are displayed with preventive measures and yield predictions.

๐ŸŒŸ Core Features

  • ๐ŸŒพ Crop Recommendation: AI suggestions based on soil and weather.
  • ๐Ÿ“‰ Yield Prediction: Advanced models to forecast seasonal harvest.
  • ๐Ÿ”ฌ Disease Prediction: Early detection of plant diseases with treatment steps.
  • ๐Ÿค Farmer Connection: A community hub to share resources and advice.
  • ๐Ÿ›’ Shopkeeper Listings: Local directory for agricultural products.

๐Ÿ›  Tech Stack

  • Frontend: HTML5, CSS3, JavaScript (ES6+)
  • Backend: Flask (Python) / Node.js
  • Machine Learning: TensorFlow, Scikit-Learn, OpenCV
  • Database: MySQL / MongoDB
  • DevOps: Docker, GitHub Actions (CI/CD)

๐Ÿ“‚ Project Structure (Simplified)

AGRITECH/
โ”œโ”€โ”€ ๐Ÿ“ src/
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ frontend/      # UI logic: HTML, CSS, and Client-side JS
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ pages/     # HTML files for Dashboard, Crop, & Disease pages
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“ assets/    # Local icons and data samples
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ backend/       # Flask API: Routes and Server-side logic
โ”‚   โ”‚   โ”œโ”€โ”€ app.py        # Main entry point for the Backend
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“ routes/    # Specific API endpoints (Crop, User, etc.)
โ”‚   โ””โ”€โ”€ ๐Ÿ“ ml_models/     # The "Brain" of AgriTech: AI/ML model files
โ”‚       โ”œโ”€โ”€ model.h5      # Pre-trained Deep Learning models
โ”‚       โ””โ”€โ”€ model.pkl     # Pre-trained Scikit-Learn models
โ”œโ”€โ”€ ๐Ÿ“ images/            # Screenshots, GIFs, and Logos used in README
โ”œโ”€โ”€ ๐Ÿ“„ requirements.txt   # Python dependencies (Must install for ML)
โ””โ”€โ”€ ๐Ÿ“„ README.md          # Main Documentation

๐Ÿ›ก๏ธ Security & Reliability

  • Data Sanitization: All user-uploaded images are processed via OpenCV filters to ensure data integrity and prevent malicious file injections during the ML inference phase.
  • Environment Safety: Sensitive information, including API keys, database credentials, and secret tokens, are strictly managed via .env files to prevent accidental exposure in the version control system.
  • Model Validation: We implement continuous testing and cross-validation of our ML models (CNNs & Random Forest) to ensure a prediction accuracy threshold of 90% or above before deployment.

๐Ÿ Getting Started

๐Ÿ“‹ Prerequisites

  • Python 3.9+
  • Node.js 18+
  • Local Server (Live Server extension or Python http.server)

โš™๏ธ Installation

git clone [https://github.com/omroy07/AgriTech.git](https://github.com/omroy07/AgriTech.git)
cd AgriTech

๐Ÿ Running Backend

cd src/backend
pip install -r requirements.txt
python app.py

๐ŸŒ Running Frontend

cd src/frontend
python -m http.server 8000
# The application will be live at http://localhost:8000

๐Ÿ›ฃ Roadmap

  • Cloud deployment
  • Mobile app integration
  • Real-time weather API
  • AI chatbot for farmers
  • Regional language support

๐Ÿ”„ Contribution Flow

Fork โ†’ Clone โ†’ Branch โ†’ Code โ†’ Commit โ†’ Push โ†’ Pull Request โ†’ Review โ†’ Merge


๐Ÿ”ฎ Future Scope

  • Cloud Deployment: Migration to AWS/Heroku for global high-availability.
  • Mobile Integration: Native Android application for on-field utility.
  • IoT Support: Integration with real-time soil moisture and NPK sensors.
  • Multilingual Support: Adding regional Indian languages to improve accessibility for farmers.

๐Ÿ‘ฅ Team Members

Name Role
Om Roy Project Lead
Kanisha Ravindra Sharma ML Engineer
Shubhangi Roy ML Engineer


๐Ÿค Contributing & Support

We love contributions! Please read our CONTRIBUTING.md to get started with SWoC 2026 tasks. Whether it's fixing bugs, adding features, or improving documentation, your help is always welcome!


โœจ Contributors

Thanks to all the wonderful people contributing to this project! ๐Ÿ’–


Made with โค๏ธ by the AgriTech Community. Part of SWoC 2026.

About

AgriTech is an AI-powered web platform that offers crop recommendations, yield prediction, disease detection, and collaborative tools to empower farmers and promote smart, sustainable agriculture.

Topics

Resources

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published