Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DOC] Update datset download score from opendatalab to openXlab #1765

Merged
merged 2 commits into from
Aug 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions dataset-index.yml
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
imagenet1k:
dataset: ImageNet-1K
dataset: OpenDataLab/ImageNet-1K
download_root: data
data_root: data/imagenet
script: tools/dataset_converters/odl_imagenet1k_preprocess.sh

cub:
dataset: CUB-200-2011
dataset: OpenDataLab/CUB-200-2011
download_root: data
data_root: data/CUB_200_2011
script: tools/dataset_converters/odl_cub_preprocess.sh
14 changes: 7 additions & 7 deletions docs/en/user_guides/dataset_prepare.md
Original file line number Diff line number Diff line change
Expand Up @@ -144,15 +144,15 @@ ImageNet has multiple versions, but the most commonly used one is [ILSVRC 2012](

````{group-tab} Download by MIM

MIM supports downloading from [OpenDataLab](https://opendatalab.com/) and preprocessing ImageNet dataset with one command line.
MIM supports downloading from [OpenXlab](https://openxlab.org.cn/datasets) and preprocessing ImageNet dataset with one command line.

_You need to register an account at [OpenDataLab official website](https://opendatalab.com/) and login by CLI._
_You need to register an account at [OpenXlab official website](https://openxlab.org.cn/datasets) and login by CLI._

```Bash
# install OpenDataLab CLI tools
pip install -U opendatalab
# log in OpenDataLab, register if you don't have an account.
odl login
# install OpenXlab CLI tools
pip install -U openxlab
# log in OpenXLab
openxlab login
# download and preprocess by MIM, better to execute in $MMPreTrain directory.
mim download mmpretrain --dataset imagenet1k
```
Expand Down Expand Up @@ -278,7 +278,7 @@ test_dataloader = val_dataloader
| [`SUN397`](mmpretrain.datasets.SUN397)(data_root[, split, pipeline, ...]) | ["train", "test"] | [SUN397](https://vision.princeton.edu/projects/2010/SUN/) Dataset. |
| [`VOC`](mmpretrain.datasets.VOC)(data_root[, image_set_path, pipeline, ...]) | ["train", "val", "tranval", "test"] | [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) Dataset. |

Some dataset homepage links may be unavailable, and you can download datasets through [OpenDataLab](https://opendatalab.com/), such as [Stanford Cars](https://opendatalab.com/Stanford_Cars/download).
Some dataset homepage links may be unavailable, and you can download datasets through [OpenXLab](https://openxlab.org.cn/datasets), such as [Stanford Cars](https://openxlab.org.cn/datasets/OpenDataLab/Stanford_Cars).

## OpenMMLab 2.0 Standard Dataset

Expand Down
14 changes: 7 additions & 7 deletions docs/zh_CN/user_guides/dataset_prepare.md
Original file line number Diff line number Diff line change
Expand Up @@ -142,15 +142,15 @@ ImageNet 有多个版本,但最常用的一个是 [ILSVRC 2012](http://www.ima

````{group-tab} MIM 下载

MIM支持使用一条命令行从 [OpenDataLab](https://opendatalab.com/) 下载并预处理 ImageNet 数据集。
MIM支持使用一条命令行从 [OpenXLab](https://openxlab.org.cn/datasets?lang=zh-CN) 下载并预处理 ImageNet 数据集。

_需要在 [OpenDataLab 官网](https://opendatalab.com/) 注册账号并命令行登录_。
_需要在 [OpenXLab 官网](https://openxlab.org.cn/datasets?lang=zh-CN) 注册账号并命令行登录_。

```Bash
# 安装opendatalab库
pip install -U opendatalab
# 登录到 OpenDataLab, 如果还没有注册,请到官网注册一个
odl login
# 安装 OpenXLab CLI 工具
pip install -U openxlab
# 登录 OpenXLab
openxlab login
# 使用 MIM 下载数据集, 最好在 $MMPreTrain 目录执行
mim download mmpretrain --dataset imagenet1k
```
Expand Down Expand Up @@ -276,7 +276,7 @@ test_dataloader = val_dataloader
| [`SUN397`](mmpretrain.datasets.SUN397)(data_root[, split, pipeline, ...]) | ["train", "test"] | [SUN397](https://vision.princeton.edu/projects/2010/SUN/) 数据集 |
| [`VOC`](mmpretrain.datasets.VOC)(data_root[, image_set_path, pipeline, ...]) | ["train", "val", "tranval", "test"] | [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) 数据集 |

有些数据集主页链接可能已经失效,您可以通过[OpenDataLab](https://opendatalab.com/)下载数据集,例如 [Stanford Cars](https://opendatalab.com/Stanford_Cars/download)数据集。
有些数据集主页链接可能已经失效,您可以通过[OpenXLab](https://openxlab.org.cn/datasets?lang=zh-CN)下载数据集,例如 [Stanford Cars](https://openxlab.org.cn/datasets/OpenDataLab/Stanford_Cars)数据集。

## OpenMMLab 2.0 标准数据集

Expand Down
Loading