This repository has been archived by the owner on Sep 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added dataset description and reorganised them
- Loading branch information
1 parent
6fb50d3
commit 4391c3f
Showing
10 changed files
with
491 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -8,3 +8,4 @@ docs/ | |
.Rproj.user | ||
data/interim/sample_metoo_tweets.csv | ||
data/raw/metoo/ | ||
data/external/rapeglish/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -75,3 +75,11 @@ python -m pytest tests/test_nn_dataturks.py | |
``` | ||
|
||
NB. this is not a permanent solution but will enable initial effective collaboration. If you have any thoughts or ideas on how to improve this, just email [email protected] | ||
|
||
Project Datasets | ||
-------------------- | ||
|
||
aws_annotated - our annotations + hatespeech | ||
dataturks - obtained from dataturks crowdsource labeling | ||
hatespeech - obtained from Zeerak Waseem | ||
rapeglish - scraped from random rape threat generator by Emma Jane |
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
377 changes: 377 additions & 0 deletions
377
notebooks/hatespeech/.ipynb_checkpoints/eda_hatespeech-checkpoint.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
105 changes: 105 additions & 0 deletions
105
notebooks/hatespeech/.ipynb_checkpoints/rulesbased_hatespeech-checkpoint.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"pycharm": { | ||
"is_executing": false | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"(8484,)\n", | ||
"(8484,)\n" | ||
] | ||
}, | ||
{ | ||
"ename": "AttributeError", | ||
"evalue": "'list' object has no attribute 'values'", | ||
"output_type": "error", | ||
"traceback": [ | ||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", | ||
"\u001b[0;32m<ipython-input-2-bf65157ed7ac>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 29\u001b[0m ]\n\u001b[1;32m 30\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 31\u001b[0;31m \u001b[0manalysis_of_weak_labeling\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabeling_functions\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabeling_function_names\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | ||
"\u001b[0;32m~/coding_projects/python/opt_out/find-out/src/evaluation/hatespeech/evaluation_rulesbased_hatespeech.py\u001b[0m in \u001b[0;36manalysis_of_weak_labeling\u001b[0;34m(data, true_labels, labeling_functions, labeling_function_names)\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0mlabeling_function_matrix\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmake_Ls_matrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabeling_functions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0mtrue_labels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrue_labels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlf_summary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msparse\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcsr_matrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabeling_function_matrix\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrue_labels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlf_names\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabeling_function_names\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | ||
"\u001b[0;31mAttributeError\u001b[0m: 'list' object has no attribute 'values'" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from torch.utils.tensorboard import SummaryWriter\n", | ||
"from src.evaluation.hatespeech.evaluation_rulesbased_hatespeech import analysis_of_weak_labeling\n", | ||
"SummaryWriter()\n", | ||
"\n", | ||
"from src.features.hatespeech.featureeng_rulesbased_hatespeech import contains_dick_or_synonym, contains_slut_or_synonyms\n", | ||
"from src.utils.normalize import normalize\n", | ||
"\n", | ||
"data = pd.read_csv(\"../../data/external/hatespeech/hs_data.csv\")\n", | ||
"data['normalized'] = data['text'].apply(lambda comment: normalize(comment))\n", | ||
"\n", | ||
"# Generate vectors\n", | ||
"X = data['normalized']\n", | ||
"print(X.shape)\n", | ||
"\n", | ||
"# True labels\n", | ||
"Y = pd.get_dummies(data['annotation'])['misogynistic']\n", | ||
"print(Y.shape)\n", | ||
"# Create noisy labels\n", | ||
"# data['contains_dick_or_synonym'] = data['text'].apply(lambda tweet: contains_dick_or_synonym(tweet))\n", | ||
"# data['contains_slut_or_synonym'] = data['text'].apply(lambda tweet: contains_slut_or_synonyms(tweet))\n", | ||
"# L = data[['contains_dick_or_synonym', 'contains_slut_or_synonym']]\n", | ||
"\n", | ||
"labeling_functions = [\n", | ||
" contains_dick_or_synonym,\n", | ||
"]\n", | ||
"labeling_function_names = [\n", | ||
" \"genitalia_reference\",\n", | ||
"]\n", | ||
"\n", | ||
"analysis_of_weak_labeling(data, Y, labeling_functions, labeling_function_names)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "PyCharm (find-out)", | ||
"language": "python", | ||
"name": "pycharm-66275036" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.7" | ||
}, | ||
"pycharm": { | ||
"stem_cell": { | ||
"cell_type": "raw", | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"source": [] | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |
Binary file not shown.