Skip to content

ext/gmp: Add GMP ECC test #18363

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
382 changes: 382 additions & 0 deletions ext/gmp/tests/gmp_cryptography_ecc.phpt
Original file line number Diff line number Diff line change
@@ -0,0 +1,382 @@
--TEST--
Examples of the usage of gmp for elliptic curve cryptography.
--DESCRIPTION--
DANGER: DO NOT USE IN SECURITY-RELATED USE-CASES.
This implementation is not hardened or tested against side channels (e.g. time or cache).
Side-channels as contained in this implementation may compromise secrets (e.g. secret keys).
Hence, it MUST NOT BE USED IN SECURITY-RELATED USE-CASES.

This implementation operates on the secp256r1 curve from https://www.secg.org/sec2-v2.pdf (also known as NIST P-256).
For addition and doublication, it implements https://www.secg.org/sec1-v2.pdf (2.2.1).
For point decompression, it implements https://www.secg.org/sec1-v2.pdf (2.3.4).
For scalar multiplication, it uses the well-known double-add-always pardigm.

The implementation executes a diffie-hellman handshake.
Omitted is an explicit demonstration of (public-key) encryption, commitments, zero-knowledge proofs or similar common applications.
However, the operations used for diffie-hellman is at the core of all these other applications, hence these use-cases are implicitly covered.

$aliceSecret and $bobSecret generated with
$random = gmp_random_range(0, $n);
$randomHex = strtoupper(gmp_strval($random, 16));
echo chunk_split($randomHex, 8, " ");
--EXTENSIONS--
gmp
--FILE--
<?php

/**
* Elliptic curve point with x and y coordinates
*/
class Point
{
public function __construct(public \GMP $x, public \GMP $y)
{
}

public static function createInfinity(): Point
{
return new Point(gmp_init(0), gmp_init(0));
}

public function isInfinity(): bool
{
return gmp_cmp($this->x, 0) === 0 && gmp_cmp($this->y, 0) === 0;
}

public function equals(self $other): bool
{
return gmp_cmp($this->x, $other->x) === 0 && gmp_cmp($this->y, $other->y) === 0;
}
}


/**
* In the finite field F_p,
* an elliptic curve in the short Weierstrass form y^2 = x^3 + ax + b is defined,
* forming a group over addition.
*
* A base point G of order n and cofactor h is picked in this group.
*/
class Curve
{
public function __construct(
private readonly \GMP $p,
private readonly \GMP $a,
private readonly \GMP $b,
private readonly Point $G,
private readonly \GMP $n
) {}

public function getP(): \GMP
{
return $this->p;
}

public function getA(): \GMP
{
return $this->a;
}

public function getB(): \GMP
{
return $this->b;
}

public function getG(): Point
{
return $this->G;
}

public function getN(): \GMP
{
return $this->n;
}
}


/**
* Math inside a prime field; hence always (mod p)
*/
class PrimeField
{
private int $elementBitLength;

public function __construct(private readonly \GMP $prime)
{
$this->elementBitLength = strlen(gmp_strval($prime, 2));
}

public function getElementBitLength(): int
{
return $this->elementBitLength;
}

public function add(\GMP $a, \GMP $b): \GMP
{
$r = gmp_add($a, $b);
return gmp_mod($r, $this->prime);
}

public function mul(\GMP $a, \GMP $b): \GMP
{
$r = gmp_mul($a, $b);
return gmp_mod($r, $this->prime);
}

public function sub(\GMP $a, \GMP $b): \GMP
{
$r = gmp_sub($a, $b);
return gmp_mod($r, $this->prime);
}

public function mod(\GMP $a): \GMP
{
return gmp_mod($a, $this->prime);
}

public function invert(\GMP $z): \GMP|false
{
return gmp_invert($z, $this->prime);
}
}

class UnsafePrimeCurveMath
{
private PrimeField $field;
public function __construct(private readonly Curve $curve)
{
$this->field = new PrimeField($this->curve->getP());
}

/**
* checks whether point fulfills the defining equation of the curve
*/
public function isOnCurve(Point $point): bool
{
$left = gmp_pow($point->y, 2);
$right = gmp_add(
gmp_add(
gmp_pow($point->x, 3),
gmp_mul($this->curve->getA(), $point->x)
Comment on lines +154 to +160
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It might be interesting to have a class that reimplements this using the overloaded operators, to ensure the behaviour is consistent. :)

Copy link
Contributor Author

@famoser famoser Apr 27, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Agreed!

However, to avoid duplicating this complicated & slow ECC code, to test the method operators I would probably go for a "kitchen-sink" kind of test. So something like, for reasonably big GMP $a and GMP $b:

var_dump(gmp_cmp(gmp_add($a, $b), $a + $b) === 0);
var_dump(gmp_cmp(gmp_sub($a, $b), $a - $b) === 0);
var_dump(gmp_cmp(gmp_mul($a, $b), $a * $b) === 0);

What do you think / does that make sense?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think we might already have a kitchen sink test, so maybe it's better to just change this test to use operator overloading?

Copy link
Contributor Author

@famoser famoser Apr 28, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, the kitchen sink test is in ext/gmp/tests/gmp_cryptography.phpt. Thinking about it, I'd rather change the kitchen sink test to use the operators. This way, the gmp_cryptography_ecc.phpt test remains close to how this would likely be written in crypto libraries: My expectation would be that these try to absolutely minimize risk; hence using operator overloading where there is a risk that the wrong operator is applied due to type confusion seems like a no-go.

So I would:

  • Extend gmp_cryptography.phpt to do all gmp operations with reasonably big numbers (around 15360 bits for operations in (integer) finite fields, around 512 bits for operations used in ECC; see NIST security strength 256).
  • Perform each operation once with the real function, and once with its operator overload.

What do you think about the proposal?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

MSTM, thanks for the insights :)

),
$this->curve->getB()
);

$comparison = $this->field->sub($left, $right);

return gmp_cmp($comparison, 0) == 0;
}

/**
* implements https://www.secg.org/sec1-v2.pdf 2.3.4
*/
public function fromXCoordinate(\GMP $x, bool $isEvenY): Point
{
$alpha = gmp_add(
gmp_add(
gmp_powm($x, gmp_init(3, 10), $this->curve->getP()),
gmp_mul($this->curve->getA(), $x)
),
$this->curve->getB()
);

$jacobiSymbol = gmp_jacobi($alpha, $this->curve->getP());
if ($jacobiSymbol !== 1) {
throw new Exception('No square root of alpha.');
}

/*
* take the square root of alpha, while doing a (much cheaper) exponentiation
*
* observe that alpha^((p+1)/4) = y^((p+1)/2) = y^((p-1)/2) * y = y
* (p+1)/4 is an integer, as for our prime p it holds that p mod 4 = 3
* alpha = y^2 by the jacobi symbol check above that asserts y is a quadratic residue
* y^((p-1)/2) = 1 by Euler's Criterion applies to the quadratic residue y
*/
$const = gmp_div(gmp_add($this->curve->getP(), 1), 4);
$beta = gmp_powm($alpha, $const, $this->curve->getP());

$yp = $isEvenY ? gmp_init(0) : gmp_init(1);
if (gmp_cmp(gmp_mod($beta, 2), $yp) === 0) {
return new Point($x, $beta);
} else {
return new Point($x, gmp_sub($this->curve->getP(), $beta));
}
}

/**
* rules from https://www.secg.org/SEC1-Ver-1.0.pdf (2.2.1)
*/
private function add(Point $a, Point $b): Point
{
// rule 1 & 2
if ($a->isInfinity()) {
return clone $b;
} elseif ($b->isInfinity()) {
return clone $a;
}

if (gmp_cmp($a->x, $b->x) === 0) {
// rule 3
if (gmp_cmp($b->y, $a->y) !== 0) {
return Point::createInfinity();
}

// rule 5
return $this->double($a);
}

// rule 4 (note that a / b = a * b^-1)
$lambda = $this->field->mul(
gmp_sub($b->y, $a->y),
$this->field->invert(gmp_sub($b->x, $a->x))
);

$x = $this->field->sub(
gmp_sub(
gmp_pow($lambda, 2),
$a->x
),
$b->x
);

$y = $this->field->sub(
gmp_mul(
$lambda,
gmp_sub($a->x, $x)
),
$a->y
);

return new Point($x, $y);
}

private function double(Point $a): Point
{
if (gmp_cmp($a->y, 0) === 0) {
return Point::createInfinity();
}

// rule 5 (note that a / b = a * b^-1)
$lambda = $this->field->mul(
gmp_add(
gmp_mul(
gmp_init(3),
gmp_pow($a->x, 2)
),
$this->curve->getA()
),
$this->field->invert(
gmp_mul(2, $a->y)
)
);

$x = $this->field->sub(
gmp_pow($lambda, 2),
gmp_mul(2, $a->x)
);

$y = $this->field->sub(
gmp_mul(
$lambda,
gmp_sub($a->x, $x)
),
$a->y
);

return new Point($x, $y);
}

private function conditionalSwap(Point $a, Point $b, int $swapBit): void
{
$this->conditionalSwapScalar($a->x, $b->x, $swapBit, $this->field->getElementBitLength());
$this->conditionalSwapScalar($a->y, $b->y, $swapBit, $this->field->getElementBitLength());
}

private function conditionalSwapScalar(GMP &$a, GMP &$b, int $swapBit, int $elementBitLength): void
{
// create a mask (note how it inverts the maskbit)
$mask = gmp_init(str_repeat((string)(1 - $swapBit), $elementBitLength), 2);

// if mask is 1, tempA = a, else temp = 0
$tempA = gmp_and($a, $mask);
$tempB = gmp_and($b, $mask);

$a = gmp_xor($tempB, gmp_xor($a, $b)); // if mask is 1, then b XOR a XOR b = a, else 0 XOR a XOR b = a XOR b
$b = gmp_xor($tempA, gmp_xor($a, $b)); // if mask is 1, then a XOR a XOR b = b, else 0 XOR a XOR b XOR b = a
$a = gmp_xor($tempB, gmp_xor($a, $b)); // if mask is 1, then b XOR a XOR b = a, else 0 XOR a XOR b XOR a = b

// hence if mask is 1 (= inverse of $swapBit), then no swap, else swap
}

/**
* multiplication using the double-add-always
*/
public function mul(Point $point, \GMP $factor): Point
{
$mulField = new PrimeField($this->curve->getN());

// reduce factor once to ensure it is within our curve N bit size (and reduce computational effort)
$reducedFactor = $mulField->mod($factor);

// normalize to the element bit length to always execute the double-add loop a constant number of times
$factorBits = gmp_strval($reducedFactor, 2);
$normalizedFactorBits = str_pad($factorBits, $mulField->getElementBitLength(), '0', STR_PAD_LEFT);

/**
* how this works:
* first, observe r[0] is infinity and r[1] our "real" point.
* r[0] and r[1] are swapped iff the corresponding bit in $factor is set to 1,
* hence if $j = 1, then the "real" point is added, else the "real" point is doubled
*/
/** @var Point[] $r */
$r = [Point::createInfinity(), clone $point];
for ($i = 0; $i < $mulField->getElementBitLength(); $i++) {
$j = (int)$normalizedFactorBits[$i];

$this->conditionalSwap($r[0], $r[1], $j ^ 1);

$r[0] = $this->add($r[0], $r[1]);
$r[1] = $this->double($r[1]);

$this->conditionalSwap($r[0], $r[1], $j ^ 1);
}

return $r[0];
}
}

// secp256r1 curve from https://www.secg.org/sec2-v2.pdf (also known as NIST P-256).
$p = gmp_init('FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFF', 16);
$a = gmp_init('FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFC', 16);
$b = gmp_init('5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E 27D2604B', 16);

$Gx = gmp_init('6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945 D898C296', 16);
$Gy = gmp_init('4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE CBB64068 37BF51F5', 16);
$G = new Point($Gx, $Gy);

$n = gmp_init('FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC632551', 16);
$curve = new Curve($p, $a, $b, $G, $n);
$math = new UnsafePrimeCurveMath($curve);
var_dump($math->isOnCurve($G)); // sanity check

// do diffie hellman key exchange
$aliceSecret = gmp_init('1421B466 CB12D4F1 298CF525 DE823345 B81B861F 25B5AA7B E86869F9 697C13D', 16);
$bobSecret = gmp_init('3CFFD9D8 3D5EF967 3432932D D70EC213 8D559C30 7EFBCFF6 0EB96EAB F08B0CBA', 16);

$alicePublicKey = $math->mul($curve->getG(), $aliceSecret);
$bobPublicKey = $math->mul($curve->getG(), $bobSecret);

$bobPublicKeyReconstructed = $math->fromXCoordinate($bobPublicKey->x, gmp_cmp(gmp_mod($bobPublicKey->y, 2), 0) === 0);
$aliceSharedKey = $math->mul($bobPublicKey, $aliceSecret);

$alicePublicKeyReconstructed = $math->fromXCoordinate($alicePublicKey->x, gmp_cmp(gmp_mod($alicePublicKey->y, 2), 0) === 0);
$bobSharedKey = $math->mul($alicePublicKey, $bobSecret);

var_dump($aliceSharedKey->equals($bobSharedKey));
var_dump(gmp_strval($aliceSharedKey->x, 16));
?>
--EXPECT--
bool(true)
bool(true)
string(64) "f480daf4f56a674c16944cda9e7c9fd0ab2813eae3a5935bf9e091cadb5c9ac3"
Loading