Python SDK for vector storage and retrieval operations with TiDB.
- 🔄 Automatic embedding generation
- 🔍 Vector similarity search
- 🎯 Advanced filtering capabilities
- 📦 Bulk operations support
- 💱 Transaction
Documentation: Jupyter Notebook
pip install pytidb
# If you want to use built-in embedding function.
pip install "pytidb[models]"
# If you want to convert query result to pandas DataFrame.
pip install pandas
Go tidbcloud.com or using tiup playground to create a free TiDB database cluster.
import os
from pytidb import TiDBClient
db = TiDBClient.connect(
host=os.getenv("TIDB_HOST"),
port=int(os.getenv("TIDB_PORT")),
username=os.getenv("TIDB_USERNAME"),
password=os.getenv("TIDB_PASSWORD"),
database=os.getenv("TIDB_DATABASE"),
)
from pytidb.schema import TableModel, Field
from pytidb.embeddings import EmbeddingFunction
text_embed = EmbeddingFunction("openai/text-embedding-3-small")
class Chunk(TableModel, table=True):
__tablename__ = "chunks"
id: int = Field(primary_key=True)
text: str = Field()
text_vec: list[float] = text_embed.VectorField(
source_field="text"
) # 👈 Define the vector field.
user_id: int = Field()
table = db.create_table(schema=Chunk)
table.bulk_insert(
[
Chunk(id=2, text="bar", user_id=2), # 👈 The text field will be embedded to a vector
Chunk(id=3, text="baz", user_id=3), # and save to the text_vec field automatically.
Chunk(id=4, text="qux", user_id=4),
]
)
table.search(
"A quick fox in the park"
) # 👈 The query will be embedding automatically.
.filter({"user_id": 2})
.limit(2)
.to_pandas()
TiDB Client supports various filter operators for flexible querying:
Operator | Description | Example |
---|---|---|
$eq |
Equal to | {"field": {"$eq": "hello"}} |
$gt |
Greater than | {"field": {"$gt": 1}} |
$gte |
Greater than or equal | {"field": {"$gte": 1}} |
$lt |
Less than | {"field": {"$lt": 1}} |
$lte |
Less than or equal | {"field": {"$lte": 1}} |
$in |
In array | {"field": {"$in": [1, 2, 3]}} |
$nin |
Not in array | {"field": {"$nin": [1, 2, 3]}} |
$and |
Logical AND | {"$and": [{"field1": 1}, {"field2": 2}]} |
$or |
Logical OR | {"$or": [{"field1": 1}, {"field2": 2}]} |
from pytidb import Session
from pytidb.sql import select
# Create a table to store user data:
class User(TableModel, table=True):
__tablename__ = "users"
id: int = Field(primary_key=True)
name: str = Field(max_length=20)
with Session(engine) as session:
query = (
select(Chunk).join(User, Chunk.user_id == User.id).where(User.name == "Alice")
)
chunks = session.exec(query).all()
[(c.id, c.text, c.user_id) for c in chunks]
with db.session() as session:
initial_total_balance = db.query("SELECT SUM(balance) FROM players").scalar()
# Transfer 10 coins from player 1 to player 2
db.execute("UPDATE players SET balance = balance + 10 WHERE id = 1")
db.execute("UPDATE players SET balance = balance - 10 WHERE id = 2")
session.commit()
# or session.rollback()
final_total_balance = db.query("SELECT SUM(balance) FROM players").scalar()
assert final_total_balance == initial_total_balance