-
Notifications
You must be signed in to change notification settings - Fork 365
feat: TensorRT AOT Plugin #3504
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
bowang007
wants to merge
3
commits into
main
Choose a base branch
from
aot_plugin
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+158
−1
Open
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
import argparse | ||
from typing import Tuple, Union | ||
|
||
import tensorrt as trt | ||
import tensorrt.plugin as trtp | ||
import torch | ||
import torch_tensorrt | ||
import triton | ||
import triton.language as tl | ||
|
||
trt_logger = trt.Logger(trt.Logger.VERBOSE) | ||
|
||
|
||
@triton.jit | ||
def add_one_kernel(x_ptr, n_elements, y_ptr, BLOCK_SIZE: tl.constexpr): | ||
pid = tl.program_id(0) | ||
block_start = pid * BLOCK_SIZE | ||
offsets = block_start + tl.arange(0, BLOCK_SIZE) | ||
mask = offsets < n_elements | ||
x = tl.load(x_ptr + offsets, mask=mask) | ||
output = x + 1 | ||
tl.store(y_ptr + offsets, output, mask=mask) | ||
|
||
|
||
@torch.library.custom_op("my::add_one", mutates_args=()) # type: ignore[misc] | ||
def add_one(X: torch.Tensor) -> torch.Tensor: | ||
# Ensure the tensors are on the GPU | ||
assert X.is_cuda | ||
|
||
# Create output tensor | ||
Y = torch.empty_like(X) | ||
|
||
# Define block size | ||
BLOCK_SIZE = 256 | ||
|
||
# Grid of programs | ||
grid = lambda meta: (triton.cdiv(X.numel(), meta["BLOCK_SIZE"]),) | ||
|
||
# Launch the kernel | ||
add_one_kernel[grid](X, X.numel(), Y, BLOCK_SIZE=BLOCK_SIZE) | ||
|
||
return Y | ||
|
||
|
||
@torch.library.register_fake("my::add_one") | ||
def _(X: torch.Tensor) -> torch.Tensor: | ||
return X | ||
|
||
|
||
@trtp.register("my::add_one") | ||
def add_plugin_desc(X: trtp.TensorDesc) -> Tuple[trtp.TensorDesc]: | ||
return X.like() | ||
|
||
|
||
@trtp.aot_impl("my::add_one") | ||
def add_plugin_aot_impl( | ||
X: trtp.TensorDesc, outputs: Tuple[trtp.TensorDesc], tactic: int | ||
) -> Tuple[ | ||
Union[str, bytes], Union[str, bytes], trtp.KernelLaunchParams, trtp.SymExprs | ||
]: | ||
type_str = "fp32" if X.dtype == trt.float32 else "fp16" | ||
|
||
block_size = 256 | ||
src = triton.compiler.ASTSource( | ||
fn=add_one_kernel, | ||
signature={ | ||
"x_ptr": f"*{type_str}", | ||
"n_elements": "i32", | ||
"y_ptr": f"*{type_str}", | ||
"BLOCK_SIZE": "constexpr", | ||
}, | ||
constants={ | ||
"BLOCK_SIZE": block_size, | ||
}, | ||
) | ||
|
||
compiled_kernel = triton.compile(src) | ||
|
||
N = X.shape_expr.numel() | ||
launch_params = trtp.KernelLaunchParams() | ||
|
||
# grid dims | ||
launch_params.grid_x = trtp.cdiv(N, block_size) | ||
# block dims | ||
launch_params.block_x = compiled_kernel.metadata.num_warps * 32 | ||
# shared memory | ||
launch_params.shared_mem = compiled_kernel.metadata.shared | ||
|
||
extra_args = trtp.SymIntExprs(1) | ||
extra_args[0] = trtp.SymInt32(N) | ||
|
||
return ( | ||
compiled_kernel.metadata.name, | ||
compiled_kernel.asm["ptx"], | ||
launch_params, | ||
extra_args, | ||
) | ||
|
||
|
||
torch_tensorrt.dynamo.conversion.plugins.generate_plugin_converter( | ||
"my::add_one", | ||
supports_dynamic_shapes=False, | ||
requires_output_allocator=False, | ||
use_aot_if_available=True, | ||
) | ||
|
||
|
||
class MyModel(torch.nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
|
||
def forward(self, X: torch.Tensor) -> torch.Tensor: | ||
res = torch.ops.my.add_one.default(X) | ||
|
||
return res | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--aot", action="store_true", help="Try to use AOT compilation", default=False | ||
) | ||
args = parser.parse_args() | ||
|
||
my_model = MyModel().to("cuda") | ||
m = torch.full((64, 64), 2, device="cuda", dtype=torch.float) | ||
|
||
assert my_model(X=m)[0][0] == 3.0 | ||
|
||
with torch_tensorrt.logging.debug(): | ||
trt_inputs = [m] | ||
model_trt = torch_tensorrt.compile( | ||
my_model, | ||
inputs=trt_inputs, | ||
debug=True, | ||
min_block_size=1, | ||
) | ||
print("Model compiled successfully!") | ||
print("Running inference with compiled model...") | ||
for i in range(10): | ||
res = model_trt(m) | ||
assert torch.allclose(res, my_model(m)), "Results do not match!" | ||
|
||
print("Inference successful!") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -31,6 +31,7 @@ def _generate_plugin_converter( | |
priority: ConverterPriority = ConverterPriority.STANDARD, | ||
supports_dynamic_shapes: bool = False, | ||
requires_output_allocator: bool = False, | ||
use_aot_if_available: bool = False, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Default to true |
||
) -> DynamoConverterImplSignature: | ||
torch_target = getattr(getattr(torch.ops, namespace), op_name) | ||
overload_str = overload if overload else "" | ||
|
@@ -41,6 +42,16 @@ def _generate_plugin_converter( | |
), f"Could not find a tensorrt plugin registered for op {namespace}::{op_name}, unable to generate converter" | ||
torch_schema = torch_target._schemas[overload_str] | ||
|
||
use_aot_plugin = use_aot_if_available | ||
|
||
if use_aot_if_available: | ||
desc = QDP_REGISTRY[f"{namespace}::{op_name}"] | ||
if desc.aot_impl_func is None: | ||
use_aot_plugin = False | ||
_LOGGER.debug( | ||
f"AOT impl func not found for {namespace}::{op_name}, use JIT plugin instead" | ||
) | ||
|
||
def custom_kernel_converter( | ||
ctx: ConversionContext, | ||
target: Target, | ||
|
@@ -80,7 +91,7 @@ def custom_kernel_converter( | |
if isinstance(v, torch.fx.immutable_collections.immutable_list): | ||
kwargs[k] = np.array(v) | ||
|
||
layer = ctx.net.add_plugin(plugin(*itensor_args, **kwargs)) | ||
layer = ctx.net.add_plugin(plugin(*itensor_args, **kwargs), aot=use_aot_plugin) | ||
assert layer, f"{namespace}::{name} plugin layer was not able to be created" | ||
_LOGGER.debug( | ||
f"Adding generated plugin for {namespace}::{name} to tensorrt network" | ||
|
@@ -107,6 +118,7 @@ def generate_plugin_converter( | |
priority: ConverterPriority = ConverterPriority.STANDARD, | ||
supports_dynamic_shapes: bool = False, | ||
requires_output_allocator: bool = False, | ||
use_aot_if_available: bool = False, | ||
) -> DynamoConverterImplSignature: | ||
plugin_ns, plugin_name = plugin_id.split("::") | ||
return _generate_plugin_converter( | ||
|
@@ -116,4 +128,5 @@ def generate_plugin_converter( | |
priority=priority, | ||
supports_dynamic_shapes=supports_dynamic_shapes, | ||
requires_output_allocator=requires_output_allocator, | ||
use_aot_if_available=use_aot_if_available, | ||
) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.