Skip to content

Add Swin Transformer Example #1346

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions run_python_examples.sh
Original file line number Diff line number Diff line change
Expand Up @@ -167,6 +167,10 @@ function gat() {
uv run main.py --epochs 1 --dry-run || error "graph attention network failed"
}

function swin() {
uv run swin_transformer.py --epochs 1 --dry-run || error "swin transformer failed"
}

eval "base_$(declare -f stop)"

function stop() {
Expand All @@ -191,8 +195,8 @@ function stop() {
time_sequence_prediction/traindata.pt \
word_language_model/model.pt \
gcn/cora/ \
gat/cora/ || error "couldn't clean up some files"

gat/cora/ \
swin_trasformer/swin_cifar10.pt || error "couldn't clean up some files"
git checkout fast_neural_style/images/output-images/amber-candy.jpg || error "couldn't clean up fast neural style image"

base_stop "$1"
Expand Down Expand Up @@ -220,6 +224,7 @@ function run_all() {
run fx
run gcn
run gat
run swin_transformer
}

# by default, run all examples
Expand Down
61 changes: 61 additions & 0 deletions swin_transformer/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
# Swin Transformer on CIFAR-10

This project demonstrates a minimal implementation of a **Swin Transformer** for image classification on the **CIFAR-10** dataset using PyTorch.

It includes:
- Patch embedding and window-based self-attention
- Shifted windows for hierarchical representation
- Training and testing logic using standard PyTorch utilities

---

## Files

- `swin_transformer.py` — Full implementation of the Swin Transformer model, training loop, and evaluation on CIFAR-10.
- `README.md` — This file.

---

## Requirements

- Python 3.8+
- PyTorch 2.6 or later
- `torchvision` (for CIFAR-10 dataset)

Install dependencies:

```bash
pip install -r requirements.txt
```

---

## Usage

### Train & Save the model

```bash
python swin_transformer.py --epochs 10 --batch-size 64 --lr 0.001 --save-model
```

### Test the model

Testing is done automatically after each epoch. To only test, run with:

```bash
python swin_transformer.py --epochs 1
``

The model will be saved as `swin_cifar10.pt`.

---

## Features

- Uses shifted window attention for local self-attention.
- Patch-based embedding with a lightweight network.
- Trains on CIFAR-10 with `Adam` optimizer and learning rate scheduling.
- Prints loss and accuracy per epoch.

---

2 changes: 2 additions & 0 deletions swin_transformer/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
torch>=2.6
torchvision
203 changes: 203 additions & 0 deletions swin_transformer/swin_transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torchvision import datasets, transforms

# ---------- Core Swin Components ----------

class PatchEmbed(nn.Module):
def __init__(self, img_size=32, patch_size=4, in_chans=3, embed_dim=48):
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)

def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x

def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows

def window_reverse(windows, window_size, H, W):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x

class WindowAttention(nn.Module):
def __init__(self, dim, window_size, num_heads):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5

self.qkv = nn.Linear(dim, dim * 3)
self.proj = nn.Linear(dim, dim)

def forward(self, x):
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads)
q, k, v = qkv.permute(2, 0, 3, 1, 4)

attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)

out = (attn @ v).transpose(1, 2).reshape(B_, N, C)
return self.proj(out)

class SwinTransformerBlock(nn.Module):
def __init__(self, dim, input_resolution, num_heads, window_size=4, shift_size=0):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.window_size = window_size
self.shift_size = shift_size

self.norm1 = nn.LayerNorm(dim)
self.attn = WindowAttention(dim, window_size, num_heads)
self.norm2 = nn.LayerNorm(dim)

self.mlp = nn.Sequential(
nn.Linear(dim, dim * 4),
nn.GELU(),
nn.Linear(dim * 4, dim)
)

def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
x = x.view(B, H, W, C)

if self.shift_size > 0:
shifted_x = torch.roll(x, (-self.shift_size, -self.shift_size), (1, 2))
else:
shifted_x = x

windows = window_partition(shifted_x, self.window_size)
windows = windows.view(-1, self.window_size * self.window_size, C)

attn_windows = self.attn(self.norm1(windows))
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)

shifted_x = window_reverse(attn_windows, self.window_size, H, W)

if self.shift_size > 0:
x = torch.roll(shifted_x, (self.shift_size, self.shift_size), (1, 2))
else:
x = shifted_x

x = x.view(B, H * W, C)
x = x + self.mlp(self.norm2(x))
return x

# ---------- Final Network ----------

class SwinTinyNet(nn.Module):
def __init__(self, num_classes=10):
super(SwinTinyNet, self).__init__()
self.patch_embed = PatchEmbed(img_size=32, patch_size=4, in_chans=3, embed_dim=48)
self.block1 = SwinTransformerBlock(dim=48, input_resolution=(8, 8), num_heads=3, window_size=4, shift_size=0)
self.block2 = SwinTransformerBlock(dim=48, input_resolution=(8, 8), num_heads=3, window_size=4, shift_size=2)
self.norm = nn.LayerNorm(48)
self.fc = nn.Linear(48, num_classes)

def forward(self, x):
x = self.patch_embed(x)
x = self.block1(x)
x = self.block2(x)
x = self.norm(x)
x = x.mean(dim=1)
x = self.fc(x)
return F.log_softmax(x, dim=1)

# ---------- Training and Testing ----------

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break

def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
if args.dry_run:
break

test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

# ---------- Main ----------

def main():
parser = argparse.ArgumentParser(description='Swin Transformer CIFAR10 Example')
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--test-batch-size', type=int, default=1000)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--gamma', type=float, default=0.7)
parser.add_argument('--dry-run', action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--log-interval', type=int, default=10)
parser.add_argument('--save-model', action='store_true')
args = parser.parse_args()

use_accel = torch.accelerator.is_available()
device = torch.accelerator.current_accelerator() if use_accel else torch.device("cpu")
print(f"Using device: {device}")

torch.manual_seed(args.seed)

transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])

train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('../data', train=True, download=True, transform=transform),
batch_size=args.batch_size, shuffle=True)

test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('../data', train=False, transform=transform),
batch_size=args.test_batch_size, shuffle=False)

model = SwinTinyNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=3, gamma=args.gamma)

for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
scheduler.step()

if args.save_model:
torch.save(model.state_dict(), "swin_cifar10.pt")
main()