Skip to content

Support new VAMANA vector type #3702

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions redis/commands/search/field.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,7 +181,7 @@ def __init__(self, name: str, algorithm: str, attributes: dict, **kwargs):

``name`` is the name of the field.

``algorithm`` can be "FLAT" or "HNSW".
``algorithm`` can be "FLAT", "HNSW", or "SVS-VAMANA".

``attributes`` each algorithm can have specific attributes. Some of them
are mandatory and some of them are optional. See
Expand All @@ -194,10 +194,10 @@ def __init__(self, name: str, algorithm: str, attributes: dict, **kwargs):
if sort or noindex:
raise DataError("Cannot set 'sortable' or 'no_index' in Vector fields.")

if algorithm.upper() not in ["FLAT", "HNSW"]:
if algorithm.upper() not in ["FLAT", "HNSW", "SVS-VAMANA"]:
raise DataError(
"Realtime vector indexing supporting 2 Indexing Methods:"
"'FLAT' and 'HNSW'."
"Realtime vector indexing supporting 3 Indexing Methods:"
"'FLAT', 'HNSW', and 'SVS-VAMANA'."
)

attr_li = []
Expand Down
178 changes: 178 additions & 0 deletions tests/test_asyncio/test_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -1815,3 +1815,181 @@ async def test_binary_and_text_fields(decoded_r: redis.Redis):
assert docs[0]["first_name"] == mixed_data["first_name"], (
"The text field is not decoded correctly"
)


# SVS-VAMANA Async Tests
@pytest.mark.redismod
@skip_if_server_version_lt("8.1.224")
async def test_async_svs_vamana_basic_functionality(decoded_r: redis.Redis):
await decoded_r.ft().create_index(
(
VectorField(
"v",
"SVS-VAMANA",
{"TYPE": "FLOAT32", "DIM": 4, "DISTANCE_METRIC": "L2"},
),
)
)

vectors = [
[1.0, 2.0, 3.0, 4.0],
[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[10.0, 11.0, 12.0, 13.0],
]

for i, vec in enumerate(vectors):
await decoded_r.hset(f"doc{i}", "v", np.array(vec, dtype=np.float32).tobytes())

query = "*=>[KNN 3 @v $vec]"
q = Query(query).return_field("__v_score").sort_by("__v_score", True)
res = await decoded_r.ft().search(
q, query_params={"vec": np.array(vectors[0], dtype=np.float32).tobytes()}
)

if is_resp2_connection(decoded_r):
assert res.total == 3
assert "doc0" == res.docs[0].id
else:
assert res["total_results"] == 3
assert "doc0" == res["results"][0]["id"]


@pytest.mark.redismod
@skip_if_server_version_lt("8.1.224")
async def test_async_svs_vamana_distance_metrics(decoded_r: redis.Redis):
# Test COSINE distance
await decoded_r.ft().create_index(
(
VectorField(
"v",
"SVS-VAMANA",
{"TYPE": "FLOAT32", "DIM": 3, "DISTANCE_METRIC": "COSINE"},
),
)
)

vectors = [[1.0, 0.0, 0.0], [0.707, 0.707, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]

for i, vec in enumerate(vectors):
await decoded_r.hset(f"doc{i}", "v", np.array(vec, dtype=np.float32).tobytes())

query = Query("*=>[KNN 2 @v $vec as score]").sort_by("score").no_content()
query_params = {"vec": np.array(vectors[0], dtype=np.float32).tobytes()}

res = await decoded_r.ft().search(query, query_params=query_params)
if is_resp2_connection(decoded_r):
assert res.total == 2
assert "doc0" == res.docs[0].id
else:
assert res["total_results"] == 2
assert "doc0" == res["results"][0]["id"]


@pytest.mark.redismod
@skip_if_server_version_lt("8.1.224")
async def test_async_svs_vamana_vector_types(decoded_r: redis.Redis):
# Test FLOAT16
await decoded_r.ft("idx16").create_index(
(
VectorField(
"v16",
"SVS-VAMANA",
{"TYPE": "FLOAT16", "DIM": 4, "DISTANCE_METRIC": "L2"},
),
)
)

vectors = [[1.5, 2.5, 3.5, 4.5], [2.5, 3.5, 4.5, 5.5], [3.5, 4.5, 5.5, 6.5]]

for i, vec in enumerate(vectors):
await decoded_r.hset(
f"doc16_{i}", "v16", np.array(vec, dtype=np.float16).tobytes()
)

query = Query("*=>[KNN 2 @v16 $vec as score]").no_content()
query_params = {"vec": np.array(vectors[0], dtype=np.float16).tobytes()}

res = await decoded_r.ft("idx16").search(query, query_params=query_params)
if is_resp2_connection(decoded_r):
assert res.total == 2
assert "doc16_0" == res.docs[0].id
else:
assert res["total_results"] == 2
assert "doc16_0" == res["results"][0]["id"]


@pytest.mark.redismod
@skip_if_server_version_lt("8.1.224")
async def test_async_svs_vamana_compression(decoded_r: redis.Redis):
await decoded_r.ft().create_index(
(
VectorField(
"v",
"SVS-VAMANA",
{
"TYPE": "FLOAT32",
"DIM": 8,
"DISTANCE_METRIC": "L2",
"COMPRESSION": "LVQ8",
"TRAINING_THRESHOLD": 1024,
},
),
)
)

vectors = []
for i in range(20):
vec = [float(i + j) for j in range(8)]
vectors.append(vec)
await decoded_r.hset(f"doc{i}", "v", np.array(vec, dtype=np.float32).tobytes())

query = Query("*=>[KNN 5 @v $vec as score]").no_content()
query_params = {"vec": np.array(vectors[0], dtype=np.float32).tobytes()}

res = await decoded_r.ft().search(query, query_params=query_params)
if is_resp2_connection(decoded_r):
assert res.total == 5
assert "doc0" == res.docs[0].id
else:
assert res["total_results"] == 5
assert "doc0" == res["results"][0]["id"]


@pytest.mark.redismod
@skip_if_server_version_lt("8.1.224")
async def test_async_svs_vamana_build_parameters(decoded_r: redis.Redis):
await decoded_r.ft().create_index(
(
VectorField(
"v",
"SVS-VAMANA",
{
"TYPE": "FLOAT32",
"DIM": 6,
"DISTANCE_METRIC": "COSINE",
"CONSTRUCTION_WINDOW_SIZE": 300,
"GRAPH_MAX_DEGREE": 64,
"SEARCH_WINDOW_SIZE": 20,
"EPSILON": 0.05,
},
),
)
)

vectors = []
for i in range(15):
vec = [float(i + j) for j in range(6)]
vectors.append(vec)
await decoded_r.hset(f"doc{i}", "v", np.array(vec, dtype=np.float32).tobytes())

query = Query("*=>[KNN 3 @v $vec as score]").no_content()
query_params = {"vec": np.array(vectors[0], dtype=np.float32).tobytes()}

res = await decoded_r.ft().search(query, query_params=query_params)
if is_resp2_connection(decoded_r):
assert res.total == 3
assert "doc0" == res.docs[0].id
else:
assert res["total_results"] == 3
assert "doc0" == res["results"][0]["id"]
Loading
Loading