Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 28 additions & 6 deletions examples/pytorch/yolov5/test.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@
BOX_THRESH = 0.5
NMS_THRESH = 0.6
IMG_SIZE = (640, 640) # (width, height), such as (1280, 736)

SHAPES =((0.0, 0.0), (0.0, 0.0)) # scale_coords: such as ((0.33, 0.33), (0.0, 140.0))
SHAPE =(0,0)# scale_coords: such as (1080, 1920)
CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
"fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
"bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
Expand Down Expand Up @@ -168,6 +169,7 @@ def yolov5_post_process(input_data):
return None, None, None

boxes = np.concatenate(nboxes)
scale_coords(IMG_SIZE, boxes, SHAPE, SHAPES)
classes = np.concatenate(nclasses)
scores = np.concatenate(nscores)

Expand Down Expand Up @@ -222,6 +224,25 @@ def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, ratio, (dw, dh)

def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]

coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
clip_coords(coords, img0_shape)
return coords

def clip_coords(boxes, shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2

if __name__ == '__main__':

Expand Down Expand Up @@ -282,8 +303,10 @@ def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
print('done')

# Set inputs
img = cv2.imread(IMG_PATH)
img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE[1], IMG_SIZE[0]))
original_img = cv2.imread(IMG_PATH)
img, ratio, pad = letterbox(original_img, new_shape=(IMG_SIZE[1], IMG_SIZE[0]))
SHAPES=(ratio,pad)
SHAPE=(original_img.shape[0],original_img.shape[1])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# Inference
Expand All @@ -306,10 +329,9 @@ def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):

boxes, classes, scores = yolov5_post_process(input_data)

img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if boxes is not None:
draw(img_1, boxes, scores, classes)
cv2.imshow("post process result", img_1)
draw(original_img, boxes, scores, classes)
cv2.imshow("post process result", original_img)
cv2.waitKeyEx(0)

rknn.release()