Skip to content

A Python library for signal processing with PyTorch. Useful for machine learning.

License

Notifications You must be signed in to change notification settings

rostepifanov/nnspt

Repository files navigation

Neural Network Signal Processing on Torch

Python version support PyPI version Downloads

NNSPT is a Python library for neural network signal processing on PyTorch.

Table of contents

Authors

Rostislav Epifanov — Researcher in Novosibirsk

Installation

Installation from PyPI:

pip install nnspt

Installation from GitHub:

pip install git+https://github.com/rostepifanov/nnspt

A simple example

from nnspt.segmentation.unet import Unet

model = Unet(encoder='tv-resnet34')

Available components

Encoders

  • ResNet
    • tv-resnet18
    • tv-resnet34
    • tv-resnet50
    • tv-resnet101
    • tv-resnet152
  • ResNeXt
    • tv-resnext50_32x4d
    • tv-resnext101_32x4d
    • tv-resnext101_32x8d
    • tv-resnext101_32x16d
    • tv-resnext101_32x32d
    • tv-resnext101_32x48d
  • DenseNet
    • tv-densenet121
    • tv-densenet169
    • tv-densenet201
    • tv-densenet161
  • EfficientNetV1
    • timm-efficientnet-b0
    • timm-efficientnet-b1
    • timm-efficientnet-b2
    • timm-efficientnet-b3
    • timm-efficientnet-b4
    • timm-efficientnet-b5
    • timm-efficientnet-b6
    • timm-efficientnet-b7
  • EfficientNetLite
    • timm-efficientnet-lite0
    • timm-efficientnet-lite1
    • timm-efficientnet-lite2
    • timm-efficientnet-lite3
    • timm-efficientnet-lite4

Pretraining

  • Autoencoder

Segmentation

Citing

If you find this library useful for your research, please consider citing:

@misc{epifanov2023ecgmentations,
  Author = {Rostislav Epifanov},
  Title = {NNSTP},
  Year = {2023},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/rostepifanov/nnspt}}
}

About

A Python library for signal processing with PyTorch. Useful for machine learning.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages