Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
580 changes: 352 additions & 228 deletions include/xsf/mathieu.h

Large diffs are not rendered by default.

39 changes: 39 additions & 0 deletions include/xsf/mathieu/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
This is an implementation of the Mathieu fcns in C/C++. The
implementation follows the prototype algos created in Matlab and
maintained on GitHub at
https://github.com/brorson/MathieuFcnsFourier. This impl is a
header-only library for compatability with Scipy's xsf library.

The following Mathieu fcns are implemented:

* Angular fcn ce(n,q,v)
* Angular fcn se(n,q,v)
* Radial (modified) fcn of first kind mc1(n,q,u)
* Radial (modified) fcn of first kind ms1(n,q,u)
* Radial (modified) fcn of second kind mc2(n,q,u)
* Radial (modified) fcn of second kind ms2(n,q,u)

Here, n = fcn order, q = frequency (geometry) parmeter, v = angular
coord (radians), u = radial coord (au).

I also provide the following utility fcns:

* Eigenvalue a_n(q)
* Eigenvalue b_n(q)
* Fourier coeffs A_n^k(q) for ce fcns
* Fourier coeffs B_n^k(q) for se fcns

The goal is to provide a replacement of the Mathieu fcn suite used by
Scipy.

These programs may be built the usual way on a Linux system using the
usual GNU build tools. The main() function runs some simple sanity
checks on the functions. In particular, it verifies some output
values against those computed by the Matlab programs. I did a lot of
verification and accuracy testing on the Matlab implementations.
Therefore, tests run here just make sure the C implementation's
outputs match those from Matlab. The code in main() also shows how to
invoke the various fcns.

Summer 2025, SDB

86 changes: 86 additions & 0 deletions include/xsf/mathieu/besseljyd.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
#ifndef BESSELJYD_H
#define BESSELJYD_H

#include "../bessel.h"
#include "../config.h"

/*
*
* This is part of the Mathieu function suite -- a reimplementation
* of the Mathieu functions for Scipy. This file holds helpers
* to the Bessel J and Y functions and also returns derivatives
* of those fcns.
*
* Stuart Brorson -- Summer and Fall 2025.
*
*/

namespace xsf {
namespace mathieu {

//==================================================================
double besselj(int k, double z) {
// This is just a thin wrapper around the Bessel impl in the
// xsf library.
double v = (double)k;
return xsf::cyl_bessel_j(v, z);
}

//==================================================================
double bessely(int k, double z) {
// This is just a thin wrapper around the Bessel impl in the
// xsf library.
double v = (double)k;
return xsf::cyl_bessel_y(v, z);
}

//==================================================================
double besseljd(int k, double z) {
// This returns the derivative of besselj. The deriv is
// computed using common identities.
double y;

if (k == 0) {
double v = 1.0;
y = -besselj(v, z);
} else {
double kp1 = (double)(k + 1);
double km1 = (double)(k - 1);
y = (besselj(km1, z) - besselj(kp1, z)) / 2.0;
}

// Must flip sign for negative k and odd k.
if (k < 0 && ((k % 2) != 0)) {
y = -y;
}

return y;
}

//==================================================================
double besselyd(int k, double z) {
// This returns the derivative of besselj. The deriv is
// computed using common identities.
double y;

if (k == 0) {
double v = 1.0;
y = -bessely(v, z);
} else {
double kp1 = (double)(k + 1);
double km1 = (double)(k - 1);
y = (bessely(km1, z) - bessely(kp1, z)) / 2.0;
}

// Must flip sign for negative k and odd k.
if (k < 0 && ((k % 2) != 0)) {
y = -y;
}

return y;
}

} // namespace mathieu
} // namespace xsf

#endif // #ifndef BESSELJYD_H
210 changes: 210 additions & 0 deletions include/xsf/mathieu/make_matrix.h
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There's a backport of std::mdspan (from C++23) in kokkos/mdspan.hpp that sounds like a perfect fit for these functions. It's already used quite a lot in xsf, e.g. in legendre.h.

Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
#ifndef MAKE_MATRIX_H
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

could a #pragma once help here?

#define MAKE_MATRIX_H

#include "../config.h"
#include "../error.h"
#include "matrix_utils.h"

/*
*
* This is part of the Mathieu function suite -- a reimplementation
* of the Mathieu functions for Scipy. This file holds the functions
* which make the recursion matrices.
*
* Stuart Brorson, Summer 2025.
*
*/

#define SQRT2 1.414213562373095
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There's a M_SQRT2 in config.h you could use instead


namespace xsf {
namespace mathieu {

/*-----------------------------------------------
This creates the recurrence relation matrix for
the even-even Mathieu fcns (ce_2n).

Inputs:
N = matrix size (related to max order desired).
q = shape parameter.

Output:
A = recurrence matrix (must be calloc'ed in caller).

Return:
return code = SF_ERROR_OK if OK.
-------------------------------------------------*/
int make_matrix_ee(int N, double q, double *A) {
int j;
int i;

// Symmetrize matrix here, then fix in caller.
i = MATRIX_IDX(N, 0, 1);
A[i] = SQRT2 * q;
i = MATRIX_IDX(N, 1, 0);
A[i] = SQRT2 * q;
i = MATRIX_IDX(N, 1, 1);
A[i] = 4.0;
i = MATRIX_IDX(N, 1, 2);
A[i] = q;

for (j = 2; j <= N - 2; j++) {
i = MATRIX_IDX(N, j, j - 1);
A[i] = q;
i = MATRIX_IDX(N, j, j);
A[i] = (2.0 * j) * (2.0 * j);
i = MATRIX_IDX(N, j, j + 1);
A[i] = q;
}

i = MATRIX_IDX(N, N - 1, N - 2);
A[i] = q;
i = MATRIX_IDX(N, N - 1, N - 1);
A[i] = (2.0 * (N - 1)) * (2.0 * (N - 1));

return SF_ERROR_OK;
}

/*-----------------------------------------------
This creates the recurrence relation matrix for the
even-odd Mathieu fcns (ce_2n+1).

Inputs:
N = matrix size (related to max order desired).
q = shape parameter.

Output:
A = recurrence matrix (calloc in caller).

Return:
return code = SF_ERROR_OK if OK.
-------------------------------------------------*/
int make_matrix_eo(int N, double q, double *A) {
int j;
int i;

i = MATRIX_IDX(N, 0, 0);
A[i] = 1.0 + q;
i = MATRIX_IDX(N, 0, 1);
A[i] = q;
i = MATRIX_IDX(N, 1, 0);
A[i] = q;
i = MATRIX_IDX(N, 1, 1);
A[i] = 9.0;
i = MATRIX_IDX(N, 1, 2);
A[i] = q;

for (j = 2; j <= N - 2; j++) {
i = MATRIX_IDX(N, j, j - 1);
A[i] = q;
i = MATRIX_IDX(N, j, j);
A[i] = (2.0 * j + 1.0) * (2.0 * j + 1.0);
i = MATRIX_IDX(N, j, j + 1);
A[i] = q;
}

i = MATRIX_IDX(N, N - 1, N - 2);
A[i] = q;
i = MATRIX_IDX(N, N - 1, N - 1);
A[i] = (2.0 * (N - 1) + 1.0) * (2.0 * (N - 1) + 1.0);

return SF_ERROR_OK;
}

/*-----------------------------------------------
This creates the recurrence relation matrix for
the odd-even Mathieu fcns (se_2n) -- sometimes called
se_2n+2.

Inputs:
N = matrix size (related to max order desired).
q = shape parameter.

Output:
A = recurrence matrix (calloc in caller).

Return:
return code = SF_ERROR_OK if OK.
-------------------------------------------------*/
int make_matrix_oe(int N, double q, double *A) {
int j;
int i;

i = MATRIX_IDX(N, 0, 0);
A[i] = 4.0;
i = MATRIX_IDX(N, 0, 1);
A[i] = q;
i = MATRIX_IDX(N, 1, 0);
A[i] = q;
i = MATRIX_IDX(N, 1, 1);
A[i] = 16.0;
i = MATRIX_IDX(N, 1, 2);
A[i] = q;

for (j = 2; j <= N - 2; j++) {
i = MATRIX_IDX(N, j, j - 1);
A[i] = q;
i = MATRIX_IDX(N, j, j);
A[i] = (2.0 * (j + 1)) * (2.0 * (j + 1));
i = MATRIX_IDX(N, j, j + 1);
A[i] = q;
}

i = MATRIX_IDX(N, N - 1, N - 2);
A[i] = q;
i = MATRIX_IDX(N, N - 1, N - 1);
A[i] = (2.0 * N) * (2.0 * N);

return SF_ERROR_OK;
}

/*-----------------------------------------------
This creates the recurrence relation matrix for
the odd-odd Mathieu fcns (se_2n+1).

Inputs:
N = matrix size (related to max order desired).
q = shape parameter.

Output:
A = recurrence matrix (calloc in caller).

Return:
return code = SF_ERROR_OK if OK.
-------------------------------------------------*/
int make_matrix_oo(int N, double q, double *A) {
int j;
int i;

i = MATRIX_IDX(N, 0, 0);
A[i] = 1.0 - q;
i = MATRIX_IDX(N, 0, 1);
A[i] = q;
i = MATRIX_IDX(N, 1, 0);
A[i] = q;
i = MATRIX_IDX(N, 1, 1);
A[i] = 9.0;
i = MATRIX_IDX(N, 1, 2);
A[i] = q;

for (j = 2; j <= N - 2; j++) {
i = MATRIX_IDX(N, j, j - 1);
A[i] = q;
i = MATRIX_IDX(N, j, j);
A[i] = (2.0 * j + 1.0) * (2.0 * j + 1.0);
i = MATRIX_IDX(N, j, j + 1);
A[i] = q;
}

i = MATRIX_IDX(N, N - 1, N - 2);
A[i] = q;
i = MATRIX_IDX(N, N - 1, N - 1);
A[i] = (2.0 * N - 1.0) * (2.0 * N - 1.0);

return SF_ERROR_OK;
}

} // namespace mathieu
} // namespace xsf

#endif // #ifndef MAKE_MATRIX_H
Loading