Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions TP2/imu_analysis/main.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from plotting import plot_angular_speed, plot_linear_acceleration, show_plots
from processing import calculate_moving_average
from reader import read_measurements_file


Expand All @@ -19,6 +20,14 @@ def main():
ay = []
az = []

t_lissé = []
wx_lissé = []
wy_lissé = []
wz_lissé = []
ax_lissé = []
ay_lissé = []
az_lissé = []

for measurement in read_measurements_file():
t.append(measurement.t)
wx.append(measurement.wx)
Expand All @@ -33,6 +42,21 @@ def main():

show_plots()

interval_lissage = 1000

t_lissé.append(calculate_moving_average(t, interval_lissage))
wx_lissé.append(calculate_moving_average(wx, interval_lissage))
wy_lissé.append(calculate_moving_average(wy, interval_lissage))
wz_lissé.append(calculate_moving_average(wz, interval_lissage))
ax_lissé.append(calculate_moving_average(ax, interval_lissage))
ay_lissé.append(calculate_moving_average(ay, interval_lissage))
az_lissé.append(calculate_moving_average(az, interval_lissage))

plot_angular_speed(t_lissé, wx_lissé, wy_lissé, wz_lissé)
plot_linear_acceleration(t_lissé, ax_lissé, ay_lissé, az_lissé)

show_plots()


if __name__ == "__main__":
main()
17 changes: 17 additions & 0 deletions TP2/imu_analysis/processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,20 @@
Module pour le traitement des mesures
*************************************
"""

data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
interval = 4


def calculate_moving_average(data: list[float], interval: int):
"""Lissage du signal
param data: liste du signal
param interval: fenêtre de la moyenne glissante"""

new_list = []
for k in range(0, len(data) - interval):
somme = 0
for i in range(interval):
somme += data[k + i]
new_list.append((1 / interval) * somme)
return new_list