frontend : npm run start backend : npm run start ai : npm run PoweredAi django : python manage.py runserver 8000
Description: An intelligent chatbot system built using machine learning and full-stack technologies, enabling interactive conversations and automated responses through a unified interface.
-
🧠 Machine Learning Module
- Implemented a Decision Tree Classifier using scikit-learn for intent recognition and response generation.
- Designed and trained custom datasets to enhance chatbot understanding accuracy.
- Integrated ML logic within Django backend (views.py) to handle user queries and model predictions dynamically.
-
🌐 Frontend Module (React.js)
- Built a dynamic Chatbot UI using React.js for smooth, real-time interactions.
- Managed app-wide state using Redux & Redux-Thunk for API handling and user context.
- Integrated custom chatbot icons and reusable components (
chatbotUi.jsx).
-
⚙️ Backend API (Django + Node.js)
- Developed robust RESTful APIs for message exchange between frontend and ML model.
- Used Django for ML logic hosting and Node.js for socket communication.
- Implemented WebSocket connections for real-time chatbot responses.
-
🗃️ Database & Configuration Module
- Managed chatbot configurations (icon, name, URLs) in the Admin Panel.
- Stored and retrieved chatbot data (chat history, user info) efficiently using MongoDB.
- Supported multi-chatbot integration by dynamically linking chatbot icons and names.
-
🧩 Admin Panel Module
-
Enabled chatbot creation through the Admin interface with custom settings:
IconUrl,ChatBotName,BackendUrl, andFrontendUrl.
-
Allowed easy deployment of multiple chatbots with unique ML logic.
-
-
💬 Chatbot Interface (Integration Module)
- Connected front-end chat interface with backend ML model responses in real time.
- Handled bidirectional message flow and dynamic UI updates using WebSocket and Axios.
- Ensured seamless multi-chatbot rendering from the
AllApps/IconRendercomponent.
-
🔐 Security & Optimization
- Implemented secure API endpoints and controlled admin access.
- Optimized data exchange and minimized latency using efficient WebSocket communication.
# 🤖 MEGA PROJECT 2025: AI Chatbot
An intelligent AI Chatbot system integrating **Machine Learning**, **React.js**, **Node.js**, and **Django** to enable real-time interactive conversations.
This chatbot uses a **Decision Tree Classifier** model to predict user intent and respond dynamically.
---
## 🧠 Core Technologies
| Layer | Technologies Used |
|-------|--------------------|
| **Frontend** | React.js, Redux, Redux-Thunk |
| **Backend** | Django (Python), Node.js |
| **Machine Learning** | scikit-learn (Decision Tree Classifier) |
| **Database** | MongoDB |
| **Other Tools** | WebSocket, REST API, VS Code, Postman, Git |
---
## ⚙️ Project Modules
### 1. Machine Learning (AI Logic)
- Implemented Decision Tree Classifier using scikit-learn.
- Built custom dataset and trained model for chatbot intent prediction.
- Integrated ML logic in `ai/chatbot/chatbot/views.py` for live responses.
### 2. Frontend (React.js)
- Designed **ChatBot UI** (`Components/ChatBotUi/chatbotUi.jsx`).
- Added icons from `src/Assets/ChatbotIcons/icon.png`.
- Managed app-wide state using **Redux** & **Thunk**.
- Integrated WebSocket for real-time chat communication.
### 3. Admin Panel
- Created module for new chatbot creation:
- **IconURL:** `"../../Assets/ChatbotIcons/TSI.png"`
- **ChatBotName:** `"TSI"`
- **BackendUrl:** `"http://127.0.0.1:8000/"`
- **FrontendUrl:** `"../ChatBotUI/TSI"`
- Enabled quick chatbot deployment and customization.
### 4. Backend (Django + Node.js)
- Django serves ML responses via REST APIs.
- Node.js handles WebSocket connections for live message exchange.
- Provides scalable multi-chatbot integration.
### 5. Database & Configuration
- Stored chatbot settings, user info, and message logs in **MongoDB**.
- Linked new chatbots dynamically through `AllApps → IconRender`.
---
## 🚀 Features
- Interactive chatbot interface with AI-powered responses
- Multi-chatbot support with custom configurations
- Real-time WebSocket-based messaging
- Admin panel for chatbot creation and management
- Secure API architecture with fast response handling
- Full-stack integration between React, Node, and Django
---
## 📂 Project Setup
```bash
# Clone repository
git clone https://github.com/yourusername/ai-chatbot-2025.git
# Frontend setup
cd frontend
npm install
npm start
# Backend setup
cd backend
pip install -r requirements.txt
python manage.py runserver
# Node WebSocket server
cd socket-server
npm install
npm run startHappyHacking
Om Shahane Full Stack & AI Developer 📧 [email protected] 🌐 LinkedIn | GitHub