Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Flux test #1104

Draft
wants to merge 10 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 97 additions & 0 deletions onediff_diffusers_extensions/examples/flux/flux.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
# Reference: https://github.com/huggingface/diffusers/pull/9043
# pipe = FluxPipeline.from_pretrained(
# "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1"
# )
# python flux.py --height 1024 --width 1024 --base /data0/hf_models/hub/models--black-forest-labs--FLUX.1-schnell/snapshots/93424e3a1530639fefdf08d2a7a954312e5cb254

import argparse
import time
import numpy as np
import torch
# Depends on the main branch of diffusers
from diffusers import FluxPipeline
from PIL import Image
parser = argparse.ArgumentParser()
# on A800-02
parser.add_argument("--base", type=str, default="black-forest-labs/FLUX.1-schnell")
parser.add_argument(
"--prompt",
type=str,
default="anime scenery concept art, sunny day at beach, hyperrealistic!, fantasy art behance, huge dramatic brush strokes, heavens, by Takahashi Yuichi, view(full body + zoomed out), intricate and intense oil paint, panorama shot, incredible miyazaki, hyper realistic illustration, intricate dotart, header",
)
parser.add_argument("--height", type=int, default=1024)
parser.add_argument("--width", type=int, default=1024)
parser.add_argument("--n_steps", type=int, default=4)
parser.add_argument(
"--saved_image", type=str, required=False, default="flux-out.png"
)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--warmup", type=int, default=1)
parser.add_argument("--run", type=int, default=1)
parser.add_argument(
"--compile", type=(lambda x: str(x).lower() in ["true", "1", "yes"]), default=True
)
args = parser.parse_args()
# load stable diffusion

# python flux.py --height 1024 --width 1024 --base /data0/hf_models/hub/models--black-forest-labs--FLUX.1-schnell/snapshots/93424e3a1530639fefdf08d2a7a954312e5cb254
pipe = FluxPipeline.from_pretrained(args.base, torch_dtype=torch.bfloat16)

# pipe = FluxPipeline.from_pretrained(args.base, torch_dtype=torch.bfloat16, local_files_only=True)
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16)
pipe.to("cuda")
if args.compile:
import os
os.environ['NEXFORT_FUSE_TIMESTEP_EMBEDDING'] = '0'
#os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
#os.environ['NEXFORT_FX_FORCE_FA3_SDPA'] = '1'

options = {"mode": "max-optimize:max-autotune:freezing:benchmark:low-precision"}
#from onediffx import compile_pipe
# pipe = compile_pipe(pipe, backend="nexfort", options=options)
from onediff.infer_compiler import compile
pipe.transformer = compile(pipe.transformer, backend="nexfort", options=options)
# generate image
generator = torch.manual_seed(args.seed)

#with torch.profiler.profile() as prof:
if True:
print("Warmup")
#with torch.profiler.record_function("flux warmup"):
if True:
for i in range(args.warmup):
image = pipe(
args.prompt,
height=args.height,
width=args.width,
output_type="pil",
num_inference_steps=args.n_steps, #use a larger number if you are using [dev]
generator=torch.Generator("cpu").manual_seed(args.seed)
).images[0]
print("Run")
# with torch.profiler.record_function("flux compiled"):
if True:
for i in range(args.run):
begin = time.time()
image = pipe(
args.prompt,
height=args.height,
width=args.width,
output_type="pil",
num_inference_steps=args.n_steps, #use a larger number if you are using [dev]
generator=torch.Generator("cpu").manual_seed(args.seed)
).images[0]
end = time.time()
print(f"Inference time: {end - begin:.3f}s")
image.save(f'{i=}th_{args.saved_image}.png')
# prof.export_chrome_trace("flux_compiled.json")

# print("New size")
# image = pipe(
# args.prompt,
# height=args.height // 2,
# width=args.width // 2,
# output_type="pil",
# num_inference_steps=args.n_steps, #use a larger number if you are using [dev]
# generator=torch.Generator("cpu").manual_seed(args.seed)
# ).images[0]
Loading