An advanced AI-powered warehouse operations analyst system featuring real-time IoT sensor monitoring, intelligent data analysis, and conversational AI interface.
- 🏭 Real-time IoT Simulation: 12 warehouse devices generating realistic sensor data
- 🤖 AI-Powered Analysis: Intelligent warehouse operations insights and recommendations
- 📊 RESTful API: Professional-grade .NET 8 Web API with comprehensive endpoints
- 💾 Database Integration: Entity Framework Core with in-memory database
- 📝 Enterprise Logging: Structured logging with Serilog
- 🔄 Real-time Data Flow: Live sensor data streaming and processing
- 🌐 CORS Enabled: Ready for frontend integration
- 📚 API Documentation: Interactive Swagger/OpenAPI documentation
makto/
├── Backend/MakotoAPI/ # .NET 8 Web API
│ ├── Controllers/ # API endpoints
│ ├── Models/ # Data models
│ ├── Services/ # Business logic
│ └── Data/ # Database context
├── IoTSimulator/ # Python IoT simulator
├── Database/ # Database scripts
└── docs/ # Documentation
git clone https://github.com/sivaadityacoder/Japanese-English-AI-Chatbot-.git
cd maktocd Backend/MakotoAPI
dotnet restore
dotnet runThe API will be available at http://localhost:5000
cd IoTSimulator
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
python warehouse_simulator.py- API Documentation: http://localhost:5000/swagger
- Health Check: http://localhost:5000/api/sensors/status
- AI Chat: POST to http://localhost:5000/api/makoto/ask
POST /api/sensors/data- Receive IoT sensor dataGET /api/sensors/latest- Get latest sensor readingsGET /api/sensors/device/{deviceId}- Get specific device data
POST /api/makoto/ask- Ask questions about warehouse operationsGET /api/makoto/insights- Get operational insights
| Device Type | Count | Purpose |
|---|---|---|
| Cold Storage (COLD-01, 02, 03) | 3 | Temperature monitoring |
| Freezer (FREEZER-01) | 1 | Frozen goods monitoring |
| Inventory Shelves (SHELF-01-04) | 4 | Stock level tracking |
| Loading Docks (DOCK-01, 02) | 2 | Activity monitoring |
| HVAC System (HVAC-01) | 1 | Climate control |
| Security System (SECURITY-01) | 1 | Access monitoring |
# Check inventory levels
curl -X POST "http://localhost:5000/api/makoto/ask" \
-H "Content-Type: application/json" \
-d '{"question": "How many items are on shelf 3?"}'
# Temperature analysis
curl -X POST "http://localhost:5000/api/makoto/ask" \
-H "Content-Type: application/json" \
-d '{"question": "Is the warehouse temperature normal?"}'
# Operational insights
curl -X POST "http://localhost:5000/api/makoto/ask" \
-H "Content-Type: application/json" \
-d '{"question": "Give me a summary of warehouse operations"}'- ASP.NET Core - Web API framework
- Entity Framework Core - Database ORM
- Serilog - Structured logging
- Swagger/OpenAPI - API documentation
- aiohttp - Async HTTP client
- asyncio - Asynchronous programming
- datetime - Time-based data generation
- In-Memory Database - Development/Demo
- Entity Framework Core - Data access layer
- IoT Devices generate realistic sensor data every 5 seconds
- Python Simulator sends data to API endpoints
- Backend API processes and stores data in database
- AI Service analyzes data for intelligent insights
- Chat Interface provides conversational access to data
- Warehouse Management: Monitor inventory, temperature, and security
- Predictive Maintenance: Analyze sensor trends for equipment health
- Operations Optimization: AI-powered insights for efficiency improvements
- Real-time Monitoring: Live dashboard capabilities for warehouse status
- React.js frontend dashboard
- Real OpenAI/GPT integration
- PostgreSQL database support
- Docker containerization
- Kubernetes deployment
- Machine learning predictions
- Mobile app interface
This project is licensed under the MIT License - see the LICENSE file for details.
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Siva Aditya
- GitHub: @sivaadityacoder
- Portfolio: [Your Portfolio Link]
- Built for Hitachi job application demonstration
- Inspired by Industry 4.0 and IoT warehouse solutions
- Designed with enterprise-grade architecture patterns
⭐ Star this repository if you found it helpful!
- IoT Simulator: Python script generating realistic warehouse sensor data
- Backend API: C# .NET Core with RESTful endpoints
- Database: PostgreSQL for real-time data storage
- Data Flow: IoT → API → Database
- RAG System: Retrieval-Augmented Generation for truthful responses
- LLM Integration: Google Gemini or OpenAI GPT-4 API
- Chat Interface: React-based conversational UI
- Query Engine: Natural language to SQL translation
- Backend: C# .NET 8, Entity Framework Core
- Database: PostgreSQL
- Frontend: React 18, TypeScript, Tailwind CSS
- IoT Simulation: Python 3.11+
- AI/ML: Google Gemini API / OpenAI GPT-4
- DevOps: Docker, Docker Compose
- Real-time IoT data collection and storage
- Natural language query processing
- Contextual AI responses based on live data
- Multi-device warehouse monitoring
- Temperature, humidity, and inventory tracking
- Conversational analytics interface
- Complex query understanding
- Data-driven insights and warnings
- Historical trend analysis
- Predictive maintenance alerts
- .NET 8 SDK
- Node.js 18+
- Python 3.11+
- PostgreSQL 15+
- Docker (optional)
- Clone the repository
- Set up the database:
cd Backend && dotnet ef database update - Start the IoT simulator:
cd IoTSimulator && python warehouse_simulator.py - Launch the backend:
cd Backend && dotnet run - Start the frontend:
cd Frontend && npm start
makto/
├── Backend/ # C# .NET API
├── Frontend/ # React Chat Interface
├── IoTSimulator/ # Python Sensor Simulation
├── Database/ # SQL Scripts
├── Docker/ # Container Configuration
└── Documentation/ # Technical Docs
Ask Makoto questions like:
- "How many items are on shelf 3 and is the temperature normal?"
- "Which areas have temperature alerts today?"
- "Show me inventory levels for the cold storage section"
- "What's the humidity trend in warehouse zone A?"
- Beyond Traditional Dashboards: Conversational analytics interface
- RAG Implementation: Ensures truthful, data-backed responses
- Real-time Integration: Live IoT data processing
- Scalable Architecture: Enterprise-ready design patterns
- AI-First Approach: Natural language as primary interface
This project demonstrates the future of Digital Transformation - making complex data accessible through intuitive AI interactions.