About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Scale a double-precision complex floating-point number by a real-valued double-precision floating-point scalar constant.
npm install @stdlib/complex-float64-base-scale
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var scale = require( '@stdlib/complex-float64-base-scale' );
Scales a double-precision complex floating-point number by a real-valued double-precision floating-point scalar constant.
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var z = new Complex128( 5.0, 3.0 );
var v = scale( 5.0, z );
// returns <Complex128>
var re = real( v );
// returns 25.0
var im = imag( v );
// returns 15.0
The function supports the following parameters:
- alpha: real-valued scalar constant.
- z: complex number.
Scales a double-precision complex floating-point number by a real-valued double-precision floating-point scalar constant and assigns results to a provided output array.
var Float64Array = require( '@stdlib/array-float64' );
var out = new Float64Array( 2 );
var v = scale.assign( 5.0, 5.0, 3.0, out, 1, 0 );
// returns <Float64Array>[ 25.0, 15.0 ]
var bool = ( out === v );
// returns true
The function supports the following parameters:
- alpha: real-valued scalar constant.
- re: real component of the complex number.
- im: imaginary component of the complex number.
- out: output array.
- strideOut: stride length for
out
. - offsetOut: starting index for
out
.
Scales a double-precision complex floating-point number stored in a real-valued strided array view by a real-valued double-precision floating-point scalar constant and assigns results to a provided strided output array.
var Float64Array = require( '@stdlib/array-float64' );
var z = new Float64Array( [ 5.0, 3.0 ] );
var out = new Float64Array( 2 );
var v = scale.strided( 5.0, z, 1, 0, out, 1, 0 );
// returns <Float64Array>[ 25.0, 15.0 ]
var bool = ( out === v );
// returns true
The function supports the following parameters:
- alpha: real-valued scalar constant.
- z: complex number strided array view.
- sz: stride length for
z
. - oz: starting index for
z
. - out: output array.
- so: stride length for
out
. - oo: starting index for
out
.
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var scale = require( '@stdlib/complex-float64-base-scale' );
var rand = discreteUniform( -50, 50 );
var z1;
var z2;
var i;
for ( i = 0; i < 100; i++ ) {
z1 = new Complex128( rand(), rand() );
z2 = scale( 5.0, z1 );
console.log( '(%s) * 5.0 = %s', z1.toString(), z2.toString() );
}
#include "stdlib/complex/float64/base/scale.h"
Scales a double-precision complex floating-point number by a real-valued double-precision floating-point scalar constant.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"
stdlib_complex128_t z = stdlib_complex128( 5.0, 3.0 );
stdlib_complex128_t out = stdlib_base_complex128_scale( 5.0, z );
double re = stdlib_complex128_real( out );
// returns 25.0
double im = stdlib_complex128_imag( out );
// returns 15.0
The function accepts the following arguments:
- alpha:
[in] double
scalar constant. - z:
[in] stdlib_complex128_t
complex number.
stdlib_complex128_t stdlib_base_complex128_scale( const double alpha, const stdlib_complex128_t z );
#include "stdlib/complex/float64/base/scale.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, 1.5 ),
stdlib_complex128( 0.0, -0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re;
double im;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
stdlib_complex128_reim( v, &re, &im );
printf( "z = %lf + %lfi\n", re, im );
y = stdlib_base_complex128_scale( 5.0, v );
stdlib_complex128_reim( y, &re, &im );
printf( "scale(5.0, z) = %lf + %lfi\n", re, im );
}
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.