Skip to content

sttkm/ComparisonOnEvogym

Repository files navigation

Comparison of algorithms for behabioral learning on Evolution Gym

abstract

Evolution Gymで、ロボットの制御学習のためのアルゴリズムを比較する。 Evolution Gymには32のタスクが用意されており、それらに指定したロボットの構造の制御方法を比較することができる。
制御方法を学習するアルゴリズムが、タスクとロボット構造の組み合あわせに対して、どのように働くかを実験することを目的として作成した。学習アルゴリズムとしてNEAT、HyperNEAT、PPOの3つを提供し、全てニューラルネットワークによってロボットを制御する。

samples

以下に、各アルゴリズムの実験で得られた結果のサンプルを示す。

  • task: Walker-v0

    • algo: NEAT
    • algo: HyperNEAT
    • algo: PPO
  • task: PlatformJumper-v0

    • algo: NEAT
    • algo: HyperNEAT
    • algo: PPO
  • task: Climber-v0

    • algo: NEAT, HyperNEAT, PPO
  • task: Flipper-v0

    • algo: NEAT
    • algo: HyperNEAT
    • algo: PPO
  • task: Thrower-v0

    • algo: NEAT
    • algo: HyperNEAT
    • algo: PPO

Experiment

requrements

NEAT

execution

$python run_neat.py
options:
option abbrev default detail
--name -n "{task}_{robot}" experiment name
--task -t Walker-v0 evogym environment id
--robot -r default robot structure name
built on "robot_files/"
if "default", load default robot for the task
--pop-size -p 200 population size of NEAT
--generation -g 500 iterations of NEAT
--eval-num 1 evaluation times. if probabilistic task, need more.
--num-cores -c 4 number of parallel evaluation processes
--view false open simulation window of best robot

make gif

after run_neat, make gif file for each of all genomes written in reward history file. output to "./out/evogym_neat/{expt name}/gif/"

$python make_gifs_neat.py {experiment name}
options:
option abbrev default detail
name of experiment for making figures
--specified -s input id, make figure for the only specified genome
--resolution-ratio -r 0.2 gif resolution ratio (0.2 -> (256,144))
--num-cores -c 1 number of parallel making processes
--not-overwrite false skip process if already figure exists
--no-multi false do without using multiprocessing. if error occur, try this option.

HyperNEAT

execution

$python run_hyper.py
options:
option abbrev default detail
--name -n "{task}_{robot}" experiment name
--task -t Walker-v0 evogym environment id
--robot -r default robot structure name
built on "robot_files/"
if "default", load default robot for the task
--pop-size -p 200 population size of NEAT
--generation -g 500 iterations of NEAT
--no-hideen false not make hidden nodes on NN substrate
--eval-num 1 evaluation times. if probabilistic task, need more.
--num-cores -c 4 number of parallel evaluation processes
--view false open simulation window of best robot

make gif

after run_hyper, make gif file for each of all genomes written in reward history file. output to "./out/evogym_hyper/{expt name}/gif/"

$python make_gifs_hyper.py {experiment name}
options:
option abbrev default detail
name of experiment for making figures
--specified -s input id, make figure for the only specified genome
--resolution-ratio -r 0.2 gif resolution ratio (0.2 -> (256,144))
--num-cores -c 1 number of parallel making processes
--not-overwrite false skip process if already figure exists
--no-multi false do without using multiprocessing. if error occur, try this option.

PPO

execution

$python run_ppo.py
options:
option abbrev default detail
--name -n "{task}_{robot}" experiment name
--task -t Walker-v0 evogym environment id
--robot -r default robot structure name
built on "robot_files/"
if "default", load default robot for the task
--num-processes -p 4 how many training CPU processes to use
--steps -s 128 num steps to use in PPO
--num-mini-batch -b 4 number of batches for ppo
--epochs -e 4 number of ppo epochs
--ppo-iters -i 100 learning iterations of PPO
--lerning-rate -lr 2.5e-4 learning rate
--gamma 0.99 discount factor for rewards
--clip-range -c 0.1 ppo clip parameter
--probabilistic -d false robot act probabilistic
--view false open simulation window of best robot

make figure

after run_ppo, make gif file for each of all controllers. output to "./out/evogym_ppo/{expt name}/gif/"

$python make_gifs_ppo.py {experiment name}
options:
option abbrev default detail
name of experiment for making figures
--specified -s input iter, make figure for the only specified controller
--resolution-ratio -r 0.2 gif resolution ratio (0.2 -> (256,144))
--num-cores -c 1 number of parallel making processes
--not-overwrite false skip process if already figure exists
--no-multi false do without using multiprocessing. if error occur, try this option.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages